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Thesis directed by Professor Dr. Deborah S. Jin

Ultracold polar molecular gases promise new directions and exciting appli-

cations in precision measurements, ultracold chemistry, electric-field controlled

collisions, dipolar quantum gases, and quantum information sciences. This the-

sis presents experimental realization of a near quantum degenerate gas of polar

molecules, where the phase-space density of the gas achieved is more than 10 or-

ders of magnitude higher than previous results. The near quantum degenerate

gas of polar molecules is created using two coherent steps. First, atoms in an ul-

tracold gas mixture are converted into extremely weakly bound molecules near a

Fano-Feshbach resonance. Second, the weakly bound molecules are transferred to

the ro-vibronic ground state using a coherent two-photon Raman technique. The

fact that these ground-state molecules are polar is confirmed with a spectroscopic

measurement of the permanent electric dipole moment. Finally, manipulation of

the molecular hyperfine state is demonstrated; this allows molecules to be pop-

ulated in a single quantum state, in particular, the lowest energy state. With

an ultracold gas of molecules, full control of molecular internal state, and electric

field as a new handle, ultracold molecular collisions, including ultracold chemical

reactions and dipolar collisions, are studied.
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Chapter 1

Introduction

1.1 Why Ultracold Polar Molecules?

The brand new field of ultracold polar molecules is motivated by the success

of ultracold atoms. Ultracold atomic gases have provided many exciting and di-

verse applications including atomic clocks, precision tests of fundamental physics,

sensors of tiny forces, and new architectures for quantum information. These

systems are miniature laboratories for studying ultracold collisions, resonances,

and few-body physics. They also provide model systems where one can explore

many-body quantum phenomena such as Bose-Einstein condensation, superflu-

idity, and Fermi superfluidity. The underlying basis for these many uses is that

ultracold atomic gases can be trapped, interrogated for long times, and precisely

controlled at the quantum level, in both the atoms’ internal (i.e. electronic, fine,

and hyperfine) and external degrees of freedom (i.e. motional state in the labora-

tory frame). Extending this type of control to an ultracold gas of polar molecules

opens exciting new research directions because of the richer energy level structure

of molecules, the possibility for reactive collisions, and the relatively strong and

long-range electric dipole-dipole interaction between polar molecules.

The rich energy level structure of molecules, which includes rotational and

vibrational levels, opens new possibilities for precision measurements [1, 2, 3].

One example is the search for a permanent electric dipole moment of the electron,
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where polar molecules can provide much larger internal electric fields than could

be directly applied to electrons in the lab or inside an atom. The more complex

internal states of polar molecules will also enable the development of new tools for

controlling and manipulating ultracold gases. In the arena of ultracold collisions,

polar molecule gases offer electric-field tuning of interactions [4], access to new

types of resonances [5], and ultracold chemistry [6]. For quantum information

applications, the relatively strong dipole-dipole interaction, which can be switched

on and off as desired with an applied external electric field, offers a means for

controlled creation of entangled states [7, 8, 9]. The dipole-dipole interaction,

which is long-range as opposed to the contact interaction of ultracold atoms, could

also be exploited in quantum gases of polar molecules to realize novel phases of

matter [10, 11, 12].

1.2 Overview of the Thesis

This thesis tells the story of our quest to make and study a quantum gas of

ground-state polar molecules. This has been a long-standing goal in the ultracold

gas community since the creation of quantum degenerate atomic gases more than

a decade ago [13, 14]. The work described in this thesis demonstrated creation of

an ultracold gas of ground-state polar molecules [15] that is more than 10 orders

of magnitude higher in phase-space density than previously achieved and is only a

factor of 15 in phase-space density away from quantum degeneracy. Phase-space

density is defined as nΛ3, where n is the peak density of the gas and Λ is the

thermal de Broglie wavelength.

In 2002, Carl Wieman, Debbie Jin, and Jun Ye at JILA began planning a

collaborative ultracold molecule experiment that would use their respective ex-

pertise. This was during the exciting time when the Wieman group was using

a Fano-Feshbach resonance to form Rb2 Feshbach molecules in a Bose-Einstein
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condensate and seeing coherent atom-molecule oscillations [16], and the Jin group

had just observed the first evidence of K2 Feshbach molecules in a quantum de-

generate Fermi gas [17]. It was thought that as a first step toward ultracold polar

molecules, we should develop the technology of making and understanding het-

eronuclear Feshbach molecules. Then, we would team up with the Ye group to find

a way of transferring Feshbach molecules to the absolute ground state. Shortly

after formulating the idea, Josh Zirbel and I began constructing our apparatus

in the summer of 2003. A detailed description of the apparatus is in J. Zirbel’s

thesis [18].

Making a quantum gas of polar molecules is challenging in part due to

the same complex internal structure that makes molecules an interesting and

richer system compared to an atomic system. There are, in general, two cooling

approaches. One is to directly cool molecules to low translational temperatures.

However, all the cooling methods demonstrated so far can only reach down to the

mK regime with a trapped gas density of 108 cm−3 or below. This corresponds

to a phase-space density of the order 10−13 [19, 20, 21]. The other approach is

to associate pairs of ultracold atoms into tightly bound molecules. The main

difficulty with this approach is to find a way to efficiently convert atoms that are

usually very far apart to tightly bound molecules without allowing the released

binding energy to heat up the gas. In 2005, Sage et al. [22] demonstrated a scheme

where they could make about 10 RbCs molecules in their absolute rovibrational

ground-state from 108 laser-cooled atoms in a single transfer cycle, with a gas

phase-space density achieved on the order 10−14. Their result highlighted a general

scheme as well as the challenges to convert ultracold atoms into tightly bound

molecules.

To make a quantum gas of polar molecules in their absolute ground state

(lowest vibrational, rotational, and electronic ground state), we perform a two-
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step coherent transfer process. In the first step, we make weakly bound Feshbach

molecules from a quantum degenerate mixture of K and Rb atoms. In the second

step, we shrink the size of the molecules to reach the absolute ground state using a

single-step of two-photon Raman transfer. The first step is described in J. Zirbel’s

thesis [18]. Although I will cover the whole story in this thesis, I will focus more on

the second step, which is surprisingly efficient. This “surprising” result was built

on a step-by-step learning process that started after making and understanding

KRb Feshbach molecules in 2006 (in Hamburg) [23] and 2007 (in our group) [24].

The work presented in this thesis was done in collaboration with many people, in

particular with Silke Ospelkaus.

Once weakly bound Feshbach molecules are available, it is necessary to use

a fully coherent transfer technique to manipulate their internal state to reach the

absolute ro-vibronic ground state. Coherent transfer ensures that the molecules all

populate a single internal quantum state and that the ultracold gas is not heated

in the process. In 2007, Winkler et al. [25] demonstrated robust and highly

efficient state transfer of homonuclear Rb2 Feshbach molecules to their second

least bound state (vibrational level v = −2 and binding energy Eb = h · 637

MHz) using a coherent two-photon Raman transfer technique. We implemented

the same technique in our heteronuclear system (which would allow us eventually

to make polar molecules), and demonstrated transfer of KRb Feshbach molecules

to another near-threshold vibrational state, v = −3 (h ·10 GHz) [26]. The efficient

transfer relies on (1) identifying a suitable electronically excited intermediate state

that has large Franck-Condon factors (FCFs) to both the initial and the target

states and (2) maintaining phase coherence of the two laser beams that drive the

transfer process. For transfer from Feshbach molecules to another near-threshold

(weakly bound) molecular state, a suitable intermediate state is relatively easy

to find, although one must consider possible constraints from selection rules. It
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turns out that the most important thing is to find an isolated line that makes the

system an “ideal” three-level system.

For transfer to near-threshold molecular states, maintaining phase coher-

ence of the two Raman beams, which have a beat frequency of tens of GHz or

below is straightforward using good electronics and commercial photodiodes and

synthesizers. However, it is a challenge to extend the technique for our next step

of reaching more deeply bound states. To allow transfer to any arbitrary deeper

bound molecular state and even to the absolute ground state, we implemented a

stabilized optical frequency comb that spans the wavelength range from 532 nm

to 1064 nm. The comb laser provides a stable reference that allows us to maintain

phase coherence of any two or more lasers in this large wavelength range.

With a Raman laser system capable of reaching deeply bound molecular

states, the next issue is finding a suitable intermediate state that allows us to

bridge the enormous difference between the wave functions of Feshbach molecules

and deeply bound molecules. Although our ultracold gas apparatus typically

yields spectroscopy data with extremely high sensitivity and accuracy, it has a

relatively low duty cycle compared to conventional spectroscopy experiments.

Therefore, we needed to choose a scheme carefully and used all available data

from conventional spectroscopy to narrow down our search. Given our previous

experience in searching for intermediate states near threshold, it appeared to be

a daunting task to follow the vibrational series (for both excited state and ground

state) from threshold to the deeply bound regime. For example, the ground state

potentials alone support 132 vibrational levels.

It was after discussions with our theoretical collaborators, Svetlana Ko-

tochigova and Paul Julienne, that we understood both the advantages and the

challenges for instead directly searching for a low vibrational (low-v) ground state.

The advantage is that conventional hot molecule spectroscopy has precise infor-
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mation specifically for the low-v states [27, 28]. Their data allows an accurate

construction of the molecule potential in the region where it is, to a good ap-

proximation, harmonic, which yields a relatively small uncertainty of the absolute

ground-state location. Therefore, if we could identify a suitable intermediate

state with good FCFs to both the initial Feshbach molecules and our desired

low-v state, the search for the target state would have a finite range to cover.

Identifying such an intermediate state in the “forest” of excited-state potentials

also required significant theoretical calculations and a full knowledge of what ex-

perimental spectroscopy was already available.

Working in the low-v regime, we first demonstrated transfer to the triplet

rovibrational ground state. Encouraged by these results, we then pursued transfer

to the absolute ro-vibronic ground state. We chose a scheme that used an inter-

mediate state that was similar to the photoassociation work by Sage et al. [22].

This choice was partially based on the demonstration by Sage et al. for RbCs

and partially based on the fact that related spectroscopy data was available [27].

Although the predicted transition strengths were relatively small, we were hope-

ful that we could achieve reasonable coupling strengths because we were working

with a near quantum degenerate gas where the cloud size is very small and the

coupling Raman lasers can be focused to a very tight spot for a high intensity.

In 2008, to the surprise of the community and to our own delight, we were

able to perform a single-step of STImulate Raman Adiabatic Passage (STIRAP)

to transfer 90% of Feshbach molecules to the absolute ground state. At nearly

the same time, two other groups reported using a similar technique to transfer

homonuclear Cs2 and Rb2 Feshbach molecules into their respective deeply bound

states [29, 30]. Since then, we have identified and manipulated the hyperfine state

of the ground-state molecules. In particular, we can create molecules that not only

populate a single hyperfine state, but we also have the ability to put them in any
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desired hyperfine state. The robust production of absolute ground-state molecules

in any desired hyperfine state aided in our first exploration of the basic collisional

properties of ground-state KRb molecules. We investigated inelastic/reactive for

both atom-molecule and molecule-molecule collisions. For atom-molecule colli-

sions, we could prepared all species, K, Rb, and KRb, in the lowest energy states.

We observed KRb loss due to ultracold chemical reactions with K. When either Rb

or KRb were in an excited hyperfine state, we observed hyperfine-state-changing

collisions. We then removed all the atoms and began to explore molecule-molecule

collisions. The KRb molecules we create are indistinguishable fermions prepared

at a temperature of a few hundreds of nano-Kelvin, which is below the height

of the p-wave barrier of kb·24 µK [31]. Molecules collisions via s-wave are not

allowed by the quantum statistics and collisions via p-wave are suppressed by the

barrier. We observed molecule collisions via tunneling through the p-wave barrier

followed by a near unit-probability of chemical reactions at short-range. For dis-

tinguishable fermions (molecules prepared in two different spin states) and s-wave

collisions, the collision rates are enhanced by a factor of 10-100.

Understanding basic collisional properties of molecules allowed us begin to

explore one unique feature of polar molecules – their large and tunable electric

dipole moment. In the presence of an external electric field, the molecules begin

to polarize along the field direction and the dipole-dipole interactions between

molecules begin to play an important role in collisions. In addition, depending on

the orientation of dipoles, “head-to-tail” collisions between dipoles are attractive

and “side-by-side” collisions are repulsive. The attractive (or the repulsive) inter-

action effectively lowers (or raises) the p-wave collisional barrier and subsequently

enhances (or reduces) the chemical reaction rate for KRb-KRb. We explored this

anisotropic nature of dipolar collisions by looking at both the inelastic loss and

the corresponding temperature evolution of the molecular gas.
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1.3 Dipole-Dipole Interaction

Going back to the motivations for ultracold polar molecules, in many appli-

cations, the specific chemical nature of molecules is not critical, and the essential

ingredient is having a reasonable large permanent electric dipole moment. The

dipole-dipole interaction, in SI units, has the form
−→
d1·

−→
d2−3(

−→
d1·br)(

−→
d2·br)

4π�or3 , where
−→
d1 and

−→
d2 are the two dipole moments, �o is the permittivity of vacuum, and −→r is the

separation between the two dipoles. The dipole-dipole interaction has two fea-

tures that are very different from typical interactions between ultracold atoms.

First, the dipole-dipole interaction falls off as 1/r3 and therefore has a long-range

character. In contrast, the interparticle potentials between atoms and/or non-

polar molecules can be adequately described as a “contact interaction,” which

can to an excellent approximation be simply treated as a delta-function. Second,

the dipole-dipole interaction is spatially anisotropic, and, as can be seen from the

expression above, the interaction can be either attractive or repulsive depending

on the orientation of the two dipoles with respect to the intermolecular vector, −→r .

In contrast, the interaction between atoms at ultracold temperatures is typically

limited by finite angular momentum barriers to spatially isotropic s-wave inter-

actions, i.e. where the relative orbital angular momentum is zero. This special

property of polar molecules permits the experimentalists to control the relative

spatial orientation, and thereby tune the intermolecular interaction with external

electric fields.

Samples of ultracold gases with dipole-dipole interactions have been realized

using chromium atoms in a Bose-Einstein condensate [32]. Chromium has an ex-

ceptionally large magnetic dipole moment of 6 µb, where µb is the Bohr magneton.

In these pioneering experiments, the anisotropic character of the dipole-dipole in-

teraction has been beautifully revealed [33, 34]. One of the key advantages of



9

polar molecules is that the electric dipolar interaction can be much stronger. For

example, the interaction between two polar molecules with a typical electric dipole

moment of order of a Debye, where 1 D = 3.34 ·10−30 C·m, is approximately equal

to the interaction between magnetic dipoles with a dipole moment of 100 µb. These

much stronger interactions will in particular allow the long-range character (1/r3)

of the dipolar interaction to be manifested in experiments. This long-range na-

ture of the dipole-dipole interaction is exploited in proposals aimed at realizing

new types of many-body Hamiltonians and novel phases of matter with ultracold

polar molecules. A review of theoretical work on this subject can be found in Ref.

[10, 35].

To get a sense of the range of dipolar interactions, it is convenient to give

a characteristic length scale, called the dipole length lD = Md2/(4π�0�2) [36],

where M is the reduced mass, d is the dipole moment of the molecules, and �

is Planck’s constant divided by 2π. The dipole length is essentially a measure of

the intermolecular separation at which the dipole-dipole interaction energy equals

the kinetic energy that corresponds to a de Broglie wavelength at that separation.

To get appreciable long-range interactions in a gas of polar molecules, we want

lD to be comparable or greater than the average interparticle spacing. For atoms

interacting via magnetic dipoles, this dipole length is typically on the order of

a few tens of Bohr radii, a0, or less. For example, Rb with a magnetic dipole

moment of 1 µb has a dipole length of lD = 1 a0 = 5 · 10−11 m, while Cr with

a magnetic dipole moment of 6 µb has lD = 23 a0. This is more than 100-fold

smaller than the mean interparticle distance even in ultracold atomic gas samples

at the highest achievable densities (n) obtained thus far, for which n−1/3 ≈ 5000

to 20000 a0. For polar molecules interacting via electric dipoles, however, this

length scale can be as large as 104 to 106 a0, and therefore could be comparable

to or even much larger than the interparticle spacing in an ultracold gas. For
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example, KRb with a dipole moment of 0.566 D has a dipole length lD of 6000

a0, while LiCs with a dipole moment of 5.5 D has lD of 6 · 105 a0. In addition,

the complex internal structure of molecules offers unique possibilities for shielding

and controlling molecular interactions by means of AC and DC electric fields [37].

Dipole-dipole interactions in an ultracold gas of polar molecules can include

both two-body and many-body effects. Two-body effects are due to processes

where one needs only consider two molecules interacting with each other in iso-

lation. These include, for example, ultracold collisions and ultracold chemistry,

where the fact that the gas is actually made up of many molecules simply en-

hances the observed total rate of these processes. In contrast, many-body effects

are those that are not simply the sum of two-body processes. One example is the

mean-field energy of a dipolar Bose-Einstein condensate [38]. In general, observ-

ing many-body effects will likely require a quantum degenerate sample of polar

molecules, such as a Bose-Einstein condensate or a quantum degenerate Fermi

gas.

1.3.1 Ultracold Collisions of Dipoles

Collisions in the ultracold regime have a number of novel features. With

their low energies and long interaction times, ultracold collisions are sensitive

probes of the interaction potential and can often be controlled with the applica-

tion of modest external fields. In addition, the quantum statistics of the colliding

particles, for example that of identical fermions or identical bosons, can play an

important role. Molecular gases could introduce a new type of ultracold collision,

namely chemically reactive collisions, and polar molecules offer the unique possibil-

ity for electric-field control of collisions. Understanding these two-body processes

will be important for exploring many-body phenomena in ultracold gases of polar

molecules.
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For a given collision energy, interparticle collisions classically occur over a

range of impact parameters with corresponding angular momentum barriers. For

atoms, the ultracold temperature regime is often characterized by the requirement

that collisions occur in only one angular momentum partial wave, namely the s-

wave, the only one for which no centrifugal barrier exists. Similarly, for molecules

at no external electric field when their dipoles have not yet been activated, the

ultracold regime can be defined by requiring that only s-wave collisions occur.

(Of course for indistinguishable fermions, s-wave collisions are not allowed.) This

requirement means that collision energies in the gas should be much less than the

height of the p-wave centrifugal barrier, which is, for example, 24µK [31] for KRb

molecules. In the presence of an external electric field, however, the molecules will

tend to polarize and the dipole-dipole interaction becomes important. This has

the effect of mixing different angular momentum partial waves, and even though

ultracold collisions may occur in a single scattering channel, that channel can no

longer be simply described by a single partial wave.

The long-range nature of the interaction between polar molecules gives rise

to a very different and fascinating temperature dependence of ultracold colli-

sions for polar molecules compared to neutral atoms. The following discussion

is summarized from the theoretical insights and results from Bohn et al. [36].

For species with a short-range potential (cf., delta function approximation for

ultracold atom-atom potentials), the elastic collision cross section becomes a con-

stant, independent of temperature in the ultracold regime. This threshold regime

of temperature-independent elastic scattering cross section is a consequence when

the range of the interaction is much smaller than the inverse scattering wavevector,

1/k. Although this makes the theoretical description of the collisions really sim-

ple, the elastic cross section is also capped to a certain value. As discussed above,

for dipole-dipole scattering, the range of the interaction can be characterized by
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a dipole length, lD. The threshold regime for scattering then occurs only when

lD < 1/k, which means that the relative kinetic energy of two colliding molecules is

less than ED = �6(4π�o)2/(M3d4). Take KRb as an example (shown in Fig. 1.1),

when fully polarized, this threshold regime corresponds to a temperature of order

80 nK. As the induced dipole moment of KRb decreases, hence the decrease of lD,

the temperature-independent elastic cross section also decreases. The long-range

dipolar elastic collisional cross section in the threshold T -independent regime is

proportional to the forth power of the dipole moment (∝ d4). One consequence is

that because dipole length is large, the elastic cross section is huge. For fermionic

KRb molecules, where dipolar collisions mixes odd partial waves, the cross section

is 2 · 16π

15 · l2
D

= 6.7 · 10−8cm2 · ( d

Debye
)4. Another important consequence is that

for temperatures higher than ED/kB (kB is the Boltzmann constant), the elastic

scattering cross section will be σ = 8πlD/(3k) and therefore increasing with de-

creasing temperature as T−1/2. This corresponds to a temperature independent

rate constant for elastic collisions of kelastic = σv = 8πlD�/(3M), which for KRb

with a dipole moment of 0.566 D would yield kelastic ≈ 2.5 · 10−9 cm3/s indepen-

dent of the temperature down to 80 nK. This means that KRb polar molecules at

80 nK are predicted to have elastic cross sections on the order of σ ≈ 5 · 107 Å2,

a scale much bigger than a typical size of a molecule!
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Quasi-Universal Dipolar Scattering 17

Figure 5. Elastic cross section for scattering of pairs of fermionic 40K87Rb molecules
in identical internal states. This calculation is based on the “universal” calculation
that includes only dipole-dipole interactions. In each case the radius r0 is rescaled so
that the s-wave scattering length vanishes. The top curve is the cross section for fully
polarized molecules with dipole moment 〈µ〉 = 0.566 Debye. The dipole is halved for
each successively lower curve.
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Figure 1.1: Universal elastic dipolar collision cross section v.s. collisional energy
(for spin-polarized fermionic KRb polar molecules) with an induced dipole mo-
ment of 0.566 D, 0.283 D, 0.142 D, and 0.07 D [36]. The cross section shows two
different regimes as a function of collisional energy (temperature). The cross sec-
tion increases with decreasing temperature and reaches a threshold regime when
the de Broglie wavelength is comparable or larger than the dipolar interaction
length scale. In addition, the dipolar elastic cross section is orders of magnitude
larger than a typical cross section for s-wave scattering of ultracold atoms.
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Now, let us consider a question relevant to the experiments, namely what is

the density required to observe elastic dipole-dipole collisions. To be experimen-

tally sensitive to collisional effects, such as loss of trapped molecules for inelastic

collisions or rethermalization of the gas for elastic collisions, requires that the

typical time between collisions, given by one over the collision rate, is less than

the interrogation time. Therefore, for a rough estimate, if we have a time of 1

s to observe a trapped sample of polar molecules with a dipole moment of 1 D,

kelastic ≈ 8 ·10−9 cm3/s and this implies a minimum number density of about n ≈

1.3·108 cm−3 is required to observe elastic dipole-dipole collisions. This is a general

prediction for elastic collisions of polar molecules. For any specific experiment,

other important considerations will include the effects of quantum statistics, con-

tributions from the short-range part of the scattering potential, and the possibility

of scattering resonances [5, 4], which can futher increase these collision rates by

orders of magnitude. Additionally, although the above discussion mainly focused

on elastic processes, investigating inelastic collisions will be the crucial first step

because it will determine the lifetime of trapped samples of polar molecules. In

particular, chemically reactive collisions between polar molecules (or between po-

lar molecules and atoms) represent an intriguing new frontier of encounters to be

explored in the ultralow temperature regime. By detecting inelastic, or reactive,

scattering through trap loss measurements, one can explore how these processes

depend on temperature, electric field, quantum statistics, the internal state of the

trapped molecules, and the geometry, or dimensionality, of the trapping potential.

In summary, long-range interactions at this ultracold regime can determine the

rates for short-range reactions.
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1.3.2 Dipolar Quantum Gas

Ultracold gases can be used to realize interesting many-body quantum sys-

tems where the interactions between particles, along with particles’ quantum

statistics, govern the macroscopic behavior of the system. In an ultracold gas

of polar molecules, the interparticle interactions are relatively strong, spatially

anisotropic, and long-range. Proposals taking advantage of these interactions,

here I listed only a limited number of examples, include studies of Bose-Einstein

condensates or Fermi gases with dipolar interactions [10, 35], experimental realiza-

tion of exotic condensed matter Hamiltonians with polar molecules confined in an

optical lattice [12], architectures for manipulating quantum information [7, 8, 9],

and creation of self-assembled dipolar crystals [39].

These proposals typically require molecules with large dipole moments in

a gas with relatively high density (small inter-particle separation) and ultralow

temperature. The highest densities and lowest temperatures are achieved for gases

that are quantum degenerate. In particular, in a Bose-Einstein condensate of polar

molecules, even a relatively small dipole moment is sufficient to realize a situation

where the dipole-dipole interaction strength far exceeds the kinetic energy. More

generally, the quantum degeneracy of a gas can be characterized by its phase-

space density, PSD = nΛ3 where n is the peak density and Λ is the thermal

de Broglie wavelength. For a quantum degenerate gas, PSD ≥ 1. For a given

gas temperature and density, the size of the dipole moment sets the interaction

strength and in general, one wants a larger dipole moment to more easily observe

interaction effects. As an extreme example in the strongly interacting limit, it

is predicted that a gas of polar molecules confined in a two-dimension pancake

geometry can form a dipolar crystalline phase [39, 40]. For a gas density of 1012

cm−3 and molecular mass of about 100 amu (atomic mass unit), this crystalline
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phase requires that the dipole moment be greater than 3 Debye [39].

1.4 Contents of this Thesis

Chapter 2 will present previous results from other groups and the challenges

in trying to produce an ultracold gas of polar molecules. Chapter 3 will intro-

duce some key aspects of the apparatus – the K-Rb machine and the Raman

laser system. Chapter 4 covers the basics of the heteronuclear KRb Feshbach

molecules that serve as the starting point for the state transfer that eventually

makes polar molecules. Chapter 5 presents our understanding and mapping of

the KRb electronic excited states that we use to transfer Feshbach molecules to

deeply bound states. Chapter 6 discusses our demonstration of near-threshold

state transfer using a two-photon Raman technique. We extend the technique for

state transfer to the triplet rovibrational ground state in Chapter 7 and reach the

absolute ro-vibronic ground state in Chapter 8. In Chapter 9, a general scheme

of molecular hyperfine state manipulation is presented. With full control of the

internal state quantum numbers of polar molecules, we study their collisions with

atoms, indistinguishable molecules, and distinguishable molecules in Chapter 10.

In Chapter 11, we study molecular dipolar collisions by tuning of an external

electric field. Finally, Chapter 12 summarizes the thesis and gives an outlook for

future directions.



Chapter 2

Challenges for Making Ultracold Polar Molecules

2.1 Introduction

Molecules are intriguing systems where their internal energy levels, which

include hyperfine, rotational, vibrational, and electronic levels, span a large spec-

trum ranging from kHz to hundreds of THz. However, because of this complex

level structure, cooling molecules, both in their translational motion and their

internal states, is difficult. Experimental efforts aimed at producing cold or ul-

tracold polar molecules generally follow one of two different approaches: one is

to directly cool molecules to an ultralow temperature; the other is to start from

ultracold atoms, and then associate them into tightly bound molecules. Taking

examples from different cooling methods, I have summarized previous progress

and the result from this thesis (the last row) in Table 1.

Method Dipole (D) T Trapped Density PSD Ref

buffer gas cooling NH (1.39) 550 mK 108 cm−3 10−14 [19]
stark deceleration OH (1.67) 50 mK 106-107 cm−3 10−13 [20, 21]
photo-association RbCs (1.3) 100 µK 104 cm−3 10−14 [22]
coherent transfer KRb (0.574) 160 nK 1012 cm−3 0.06 this thesis

Table 2.1: Summary of experimental results for production of cold and ultracold
polar molecules. Selected examples of the molecule species with its electric dipole
moment (calculated or measured) and the achieved gas temperature, trapped
number density, and phase-space density are given. (The photo-association result
was for an untrapped sample of molecules.)
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2.2 Direct Cooling of Molecules

The most straightforward approach for producing ultracold polar molecules

would simply be to directly cool them to ultralow temperatures, just as is done

for ultracold atomic gases. However, the powerful technique of laser cooling

[41, 42, 43], which launched experimental investigation of ultracold atomic gases,

is much more challenging for molecules due to complex internal state structures.

The basic issue is that achieving low temperature necessitates momentum recoil

accumulated from thousands to millions of excitation and spontaneously emitted

photons. This in turn requires efficient cycling in a “closed” 2 or 3 level system,

which is generally not feasible in electronic excitation of molecules. Recently, laser

cooling of molecules via coherent scattering inside high-finesse optical cavities has

been proposed [44, 8, 45, 46], but a necessary ingredient for successful implemen-

tation is an initial sample of cold molecules with a sufficiently high density to

enable collective effects [46]. Free space laser cooling has also been proposed [47],

including the possibility of constructing a general purpose magneto-optic trap for

a certain class of polar molecules [48].

Many general molecule cooling techniques developed over the last 10 years

have proved to be very successful in producing a diverse set of cold polar molecules,

including but not limited to CaH, CaF, OH, NH3, ND3, H2CO, NH, PbO, and

YbF. These so-called “direct cooling” techniques include imbedding and cooling

molecules in a cryogenically cooled helium buffer gas [49, 19, 50], slowing molecules

from a supersonic jet through Stark deceleration [51, 21], magnetic [52, 53] or

optical deceleration [54], velocity filtering of a molecular beam [55], production of

cold molecules via kinematic collisions [56], or backward motion of a molecular

beam source nozzle [57]. Direct cooling of polar molecule gases provides access to

temperatures in the range of 10’s to 100’s of mK, which is sufficiently cold to allow
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molecules to be confined in electro-static [20], AC electric field [58], and magnetic

traps [59, 19]. These cold species can be used for precision measurements [3],

collisional studies [60, 21, 61], and cold chemistry [6, 62]. To further reduce the

molecular temperature, methods such as the proposed laser cooling approaches

discussed above, cooling via evaporation, or sympathetic cooling with ultracold

atoms might prove to be viable. Two preconditions for their success will be i) a

favorable ratio of elastic and inelastic collisions and ii) a sufficiently dense sample

of molecules accumulated inside a trap. With further improvements that permit

lower temperatures and higher trapped gas densities, it looks promising for dipole-

dependent cold collision dynamics in directly cooled polar molecule gases to be

accessible for study in the near future.

2.3 Photo-association

An alternative to directly cooling polar molecules is to start from ultracold

atoms and convert them pairwise into deeply bound molecules. This takes ad-

vantage of the fact that atoms can be laser cooled to temperatures of 100 µK or

below. However, the challenge here is to efficiently bring the atoms together to

form tightly bound molecules while avoiding any heating of the gas due to the

release of the binding energy, which usually corresponds to a temperature of a few

thousand Kelvins (Fig. 2.1). Heating in general means that many energy states

are populated, including both external and internal states.

One way to accomplish this is photo-association [63], where one uses light

to drive a transition between a scattering state of two atoms and an electronically

excited molecular state. The electronically excited molecules then quickly decay

by spontaneous emission to electronic ground-state molecules. The advantage of

this incoherent optical process, as opposed to collisional formation of molecules, is

that the binding energy is removed in the energy difference between the absorbed
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6000K

Figure 2.1: Forming ultracold molecules from ultracold atoms is challenging be-
cause a large binding energy is released when two atoms form a tightly bound
molecule. For example, the binding energy of the ro-vibronic ground-state KRb
molecules equals to a temperature of 6000K (4000 cm−1), which is 1010 times
larger than a typical temperature of an ultracold atom gas.

and emitted photons rather than being released as kinetic energy that heats the

ultracold gas. In photo-association, ideally only a small amount of heating of

molecular external motion remains due to the recoil of the molecule as it emits

a photon in its spontaneous decay; this heating typically corresponds to a few

hundreds of nano-Kelvin. However, typically many internal states are populated

at the end of a photo-association process.

Use of photo-association to make ultracold polar molecules in their rota-

tional, vibrational, and electronic ground state was first demonstrated by Sage

et al. [22]. In their experiment, optical fields were applied to transfer Rb and

Cs atoms in a continuum of scattering states to the absolute ground state of the

RbCs molecule using the two steps illustrated in Fig. 2.2. A two-step process was

necessary because of the extremely small wavefunction overlap between two free

atoms and a tightly bound molecule. For example, even at a density of 1012 cm−3,
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which is a couple orders of magnitude higher than that of laser-cooled atom gases,

the typical distance between two atoms is 20,000 a0. In contrast, a tightly bound

diatomic molecule has an internuclear separation of 10 a0 or less.

The first step used by Sage et al. was photo-association followed by spon-

taneous decay to produce large, weakly bound electronic ground-state molecules

in high vibrational (high-v) states. In the spontaneous decay, many high-v levels

of the triplet ground state were populated, with the biggest branching ratio being

7% into v = 37 [22]. The second step was then to apply two laser fields for a

pump-dump transfer process using absorption and stimulated emission. This step

transferred molecules in the v = 37 of the triplet ground-state to v = 0 of the

singlet ground-state through an intermediate electronic excited state.

This photo-association technique produced absolute ground-state molecules

that were at the ultracold temperature of 100 µK in their translational motion.

However, the creation process was inefficient. In this proof-of-principle experi-

ment, each laser pulse sequence only produced 10 absolute ground-state molecules

from the initial 108 atoms. In addition, molecules in many other higher energy

vibrational and rotational levels were produced at the same time. Nevertheless,

this experiment highlights the general scheme as well as the challenges in con-

verting ultracold atoms into tightly bound molecules. Other experiments have

used photo-association of laser-cooled atoms to create ultracold polar molecules

in bialkali systems such as KRb [64, 65], NaCs [66], and LiCs [67].

To make this incoherent process more efficient in the production of deeply

bound ground-state molecules, one obviously desires to have an enhanced coupling

strength from the initial scattering atom state to a suitable excited molecular state

as well as an increased Franck-Condon factor from that excited molecular state

to a deeply bound vibrational level in the electronic ground potential. An en-

hanced phase-space density of the initial atomic gas can dramatically enhance
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Figure 2.2: Schematic of a two-step optical transfer process described in Sage et
al.[22] that produced RbCs in the absolute ground state from laser-cooled Rb and
Cs atoms. The first step is to create weakly bound molecules (in high vibrational
levels) by photo-associating (PA) atoms into excited-state molecules that then
decay back to the ground electronic state by spontaneous emission (wiggly line).
These weakly bound molecules provide a better wavefunction overlap for the sec-
ond transfer to the absolute ground state. The second step is to use a stimulated
emission pump-dump process (dashed arrows), to enhance optical transfer from
weakly bound molecules to the absolute ground state. Typically this process cre-
ated 10 molecules in the absolute ground state when starting from 108 atoms in
a single two-step transfer.
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the transition rate for the first step. But optimization of the overall efficiency is

limited by the molecular structure. Furthermore, this incoherent process will not

be able to produce molecules populating only a single target state. Techniques

and proposals have emerged to enhanced the transition strengths using accidental

resonances between molecular states, either in the excited electronic potentials

[68, 69] or in the ground potential [70]. A recent proposal suggests that simply

performing photo-association of atoms near a Fano-Feshbach resonance is suffi-

cient to drive them into a deeply bound molecular state either through one-photon

or two-photon transitions [71, 72]. Although resonant-assisted photo-association

enhances the transition by orders of magnitude, the overall transition rate is still

rather weak. Using either one-photon or two-photon processes to efficiently drive

atoms to a deeply bound state still appears challenging. An additional issue with

this approach is that the initial state is a scattering state (unless the initial atomic

gas is quantum degenerate), and the time scale for two atoms to come close enough

to be photo-associated, which can be of order a few ms, can effectively limit the

transition Rabi frequency.

2.4 Fully Coherent Scheme

One extremely powerful solution to all the challenges outlined above is to

use a transfer process that is fully coherent and therefore even reversible. In

particular, we can replace each incoherent step of the photo-association method

by a coherent transfer step. The advantages of a fully coherent method are i)

it is adiabatic, and therefore results in no heating and ii) it is single target-

state selective, therefore the process can be much more efficient. However, to

avoid strong transfer field to induce non-linear effect, one or two coherent steps

may not be sufficient to pair atoms together and transfer them to the absolute

rovibrational molecular ground state. In that case, a general solution is to use a
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carefully designed train of coherent pulses that can achieve a complete population

transfer to a single target state via coherent accumulation of small population for

each pulse [73]. But it turns out that for KRb, and this should also be true for

other heteronuclear bi-alkali molecules in general, one can find a single excited

electronic state that has relatively strong transition strengths and makes a single-

or two-step transfer possible.

In the following chapters, I will describe in detail the complete scheme of

the fully coherent method that we use to produce a near quantum degenerate gas

of ultracold polar molecules in their ro-vibronic ground state [15]. Here I provide

a quick summary. As opposed to a typical photo-association experiment discussed

in the previous section, we start with an ultracold atomic gas at a high phase-

space density. This high phase-space density is achieved using the now standard

techniques of laser cooling followed by forced evaporation [74, 75]. At the end of

the evaporation, we have a quantum degenerate gas of K and Rb atoms, each in

a single hyperfine state, at a temperature of several hundred nK. The atoms are

confined in a far-detuned optical dipole trap, which can also confine the resulting

KRb molecules.

We then use two coherent steps for production of ultracold polar molecules.

First, we use a magnetic-field tunable Fano-Feshbach resonance, to convert atoms

pairwise into molecules. (Strictly speaking, this step is not fully coherent because

the initial state is a thermal ensemble and there is loss during the conversion.)

Secondly, these extremely weakly bound molecules are then optically transferred

into the ro-vibronic ground state using a two-photon coherent process. The basic

approach of making molecules near a Fano-Feshbach resonance and then using

coherent optical manipulation of the molecules’ internal state has also been used

to produce ultracold gases of homonuclear (i.e., non-polar) molecules [30, 29]. In

the next chapters, I will discuss in more detail the two steps in this transfer that
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makes it possible to map the high phase-space density of an ultracold atomic gas

into tightly bound polar molecules in the ultracold regime.



Chapter 3

Apparatus

The main workhorse of the experiments presented in this thesis has two

parts, the atoms/molecules machine and a spectroscopy/Raman laser system.

3.1 K-Rb Machine

The detail of the hardware and the software features of the K-Rb machine

can be found in J. Zirbel’s thesis [18]. Here I will briefly discuss the methods that

we use to prepare ultracold gas of 40K and 87Rb atoms, and describe a few specific

additions to the apparatus since Zirbel’s thesis.

The first step of our experiment is to prepare an ultracold mixture of K and

Rb atoms. To do this, we start by trapping and cooling K and Rb simultaneously

in a dual-species magneto-optical trap (MOT). We typically have K atom number

NK = 1 · 107 (w/o the presence of the Rb MOT) and Rb atom number NRb =

2 - 4·109 in the MOT. The MOT loading time is on the order of 5 s. We then

physically move atoms through a 0.7-m transfer region to a differentially pumped

higher vacuum region of the chamber. The transfer efficiency is 10-20%. The

atoms are then loading into a standard Ioffe-Pritchard (IP) magnetic trap. At

this stage, we perform forced evaporative cooling on Rb by driving hot Rb atoms

from the |F = 2, mF = 2� state to the untrapped |1, 1� state. At the same time,

the K atoms gas is sympathetically cooled by thermal contact with the directly
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cooled Rb gas. The K atoms are in the |9/2, 9/2� state. Here, F denotes the total

atomic spin and mF is the spin projection along the magnetic-field direction. We

also remove any Rb atoms in the |2, 1� state to prevent trap loss due to collisions

with K atoms in the |9/2, 9/2� state. At the end of the IP trap evaporation, we

typically have 2 - 3·106 Rb atoms and 6 - 7·105 K atoms at 1µK. This gas mixture

is then transferred into an optical dipole trap (OT). (The system is capable of

having up to 5·106 Rb atoms in the presence of the same number of K atoms

simply by increasing Rb MOT laser power (and hence the Rb MOT number), but

we found that in the later stages, higher Rb number limits the K number.)

For our experiments aimed at making ro-vibronic ground-state molecules,

we used a single-beam optical dipole trap with a waist of 40 µm (Fig. 3.1(a)). The

trap laser beam was derived from either a 1064 nm single frequency fiber laser

or a 1090 nm multi-mode fiber laser. After loading atoms in the optical trap, we

transfer the K and Rb atoms into their respective lowest hyperfine states, K in

|9/2,−9/2� and Rb in |1, 1�, at a magnetic field of 31.29 G. The transfer uses

adiabatic rapid passage by a frequency swept rf and microwave fields. We then

increase the magnetic field to 532.30 G for further evaporation before ramping the

field close to 546 G for Feshbach molecule creation. Evaporation in the optical

trap is accomplished by lowering the laser power to cool the gas to a few hundreds

of nanoKelvins. In the later experiments (Chapter 10 and 11), we changed our

dipole trap to a crossed beam geometry with two intersecting elliptical-shaped

beams (Fig. 3.1(b)). Each beam has a waist of 40µm×200µm. (When using

the crossed beam optical dipole trap, we also shape our Raman laser beam to be

elliptical. The 690 nm Raman laser is focused to a waist of 38.5µm×205µm, and

the 970 nm Raman laser is focused to 43.5µm×205µm waist.) A summary of our

operating condition is given in Table. 3.1.

Finally, I wish to mention that we were able to shorten the experimental
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MOT IP # and Temp. OT # and Temp

Rb atoms 2 - 4·109 2 - 3·106 at 1 µK 3·105 at 300 nK
K atoms 1 ·107 (w/o Rb) 6 - 7·105 at 1 µK 3·105 at 300 nK

Feshbach Molecules 3 - 5·104 (Ch. 4)

Table 3.1: A benchmark of experimental operating condition.

cycle time by a factor of 2 since Zirbel’s thesis: the evaporation time in the IP

trap was shorten from 60 s to 35 s and the evaporation time in the OT went from

40 s to 3-4 s. The significant reduction of OT evaporation time was accomplished

simply by aligning the trap so that the beam had a smaller tilt away from be-

ing perpendicular to the direction of gravity. This also improved our atom and

Feshbach molecule numbers in the OT by a factor of 2 or 3.
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optical dipole trap

Raman lasers

probe

from two fibers

crossed dipole trap

homogeneous B field

Raman lasers

Top View (gravity direction into the page)

probe

uniform E field parallel to gravity

from two fibers

(a)

(b)

Figure 3.1: Top view of a simplified layout of our experiment (a) using a single
beam optical dipole trap and (b) using a crossed beam dipole trap. In both
configurations, a uniform magnetic field is provided by a pair of Helmholtz coils.
The Raman laser beams for molecular internal state manipulation co-propagate
along the magnetic-field direction. The imaging beam or “probe” is perpendicular
to the magnetic-field direction. Gravity in this picture points into the page.
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3.2 Electric-field Plates

One new addition to the apparatus was a pair of electric-field plates. Be-

cause these were incorporated after the main apparatus was built, the plates were

constrained to be located outside of our glass-cell (“science cell”) vacuum chamber

(Fig. 3.2).

science cell (glass)
wall thickness: 0.125 cm

nearby grounded coils

transparent E-field plate
(4 cm x 2.37 cm x 0.09 cm)

grounded microwave coil~ 0.25 cm

1.35 cm
1.0 cm

~ 2.3 cm

gravity

indium tin oxide coating

KRb

Figure 3.2: Schematic cross-section view of the apparatus near the “science cell”
(not drawn to scale). One anti-gravity coil and an rf coil are left out from the
drawing.

The E-field plates are cut from #CH-50IN-S209 transparent plates with

indium tin oxide coating purchased from Delta Technologies. The plates transmit

80-90% of light in the wavelength range of 600 nm to 1100 nm. (Plates with

5-10% better transmission properties are also available from the same company

now.) The plates are 4.0 cm long, 2.37 cm wide, and 0.09 cm thick and the inner

walls are separated by 1.35±0.02 cm with a phenolic holder. The coating surfaces

face each other. The pair of plates fits around our glass cell, which comes from

Starna Cells and is made out of Borofloat (a type of pyrex glass with dielectric
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constant∼ 4.8) with a single wall thickness of 0.125 cm. The E-field at the position

of “our molecules” is calculated from the geometry and the applied voltages on the

plates in addition to considering the glass walls as dielectric material between the

plates. For an applied voltage difference of 1V across the plates, the corresponding

uniform E-field between plates pointing along the gravity direction is

1V

1.35 cm
· 1.35 cm

1.35 cm− 2 · 0.125cm + 2 · 0.125cm/4.8
= 0.868

V

cm
. (3.1)

This calculated field has an uncertainty from the measured separation between

plates (1.5%), the dielectric constant of the glass material (1%), the thickness of

the glass wall (unknown), and the fringe field that came from the finite size of

the plates (0.7%). Together, we estimated the total uncertainty of the calculated

field to be 3-5%. This does not include possible free floating electrons or patch

charges. So far, we do not have an independent way of calibrating the electric

field.

Obviously, the biggest concern with placing the plates outside the vacuum

chamber is that dielectric breakdown can occur at a relatively low applied voltage.

(The air breakdown field is 30 kV/cm.) Therefore, we tried to insulate surrounding

metal by covering them with many layers of Kapton tape. One of the closest metal

planes is a microwave coil that is laid out on a copper circuit board and is only

0.16 cm from the E-field plate surface and 0.25 cm from the E-field coating surface

where the voltage is applied (Fig. 3.2). With 3 - 5 layers of Kapton tapes, we

only saw immediate discharge between the microwave coil and the E-field plate

above ∼ 6 kV applied voltage difference. We also tested the breakdown voltage

by putting a grounded wire wrapped in 2 layers of Kapton tape directly on the

coating surface, which is essentially a test of the breakdown of the Kapton tape.

For this test, we saw discharge happened at ∼ 4 kV. (This wire is the same as what

we used for the magnetic-field coils that surround the E-field plates.) In addition,
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we have also tested the plates with a mocked up glass cell in between. For our

system, we are confident that we can apply up to 10 kV (+5 kV on one plate and

-5kV on the other) across the field plates before any breakdown happens. This

corresponds to an electric field of ∼ 9 kV/cm.

However, we run into another limit before the dielectric breakdown occurs.

Namely, when the electric field is turned up too high, we saw our glass cell (per-

haps) being polarized and does not relax after the field is off. This usually happens

at an applied voltage of 6.0 kV (5.2 kV/cm) and was seen using sensitive Stark

spectroscopy on KRb (Chapter 8.3).

3.3 Molecular Spectroscopy Lasers

To manipulate molecular internal ro-vibronic states, we used many different

tunable lasers to map out relevant electronic excited states and ground states of

40K87Rb. These lasers include a home-built tunable Ti:sapphire (Ti-Sa) laser, an

ELS VersaDisk tunable around 1030 nm, and home-built diode lasers in either

Littman or Littrow configurations at various wavelengths.

3.3.1 Widely Tunable Ti:sapphire Laser

A widely tunable cw Ti-Sa laser is ideal for performing molecular spec-

troscopy in the wavelength range that is relevant for finding suitable intermediate

states to bridge the large wavefunction mismatch between Feshbach molecules

and any desired deeply bound state. The laser we use was built by Lisheng Chen

before/during the same time when we were building the K-Rb machine. An ex-

cellent discussion of the layout of our Ti-Sa laser and the elements for large and

stable frequency tuning can be found in Chapter 2.2 of Chen’s thesis [76]. Since

Lisheng had already graduated by the time we started to work with the Ti-Sa, it

was postdoc Avi Pe’er who revived the Ti-Sa laser and helped to incorporate it



33

into our experiment.

The wavelength tuning range of the Ti-Sa is mostly set by the cavity mirrors

and the normal lasing wavelength of a Ti-Sa crystal. We first used the Ti-Sa laser

to scan for KRb* states near the Rb D1 line (∼ 795 nm). For this purpose, we

used a set of mirrors with coating that allows a tuning range from 730 nm to 850

nm. The wavelength is tuned using optical elements in the cavity, including a

thick etalon, a thin etalon, and a birefringent filter (see Chen’s thesis [76]). In

this wavelength range, the Ti-Sa laser is offset-locked to a temperature stabilized

Fabry-Perot cavity that has a mode spacing of 250 MHz. The Ti-Sa linewidth is

< 20 kHz and the absolute long-term frequency stability is better than 2 MHz.

We later changed the mirrors inside the cavity such that the Ti-Sa was lasing

near 1 µm with a tuning range of ± 50 nm. This change is ideal for the search

of one-photon transitions from Feshbach molecules to KRb* states in the excited

potential 23Σ+. For this wavelength range, we directly lock the Ti-Sa laser to the

Ti-Sa frequency comb (see discussion below).

3.3.2 Diode Lasers

We use numerous home-built external cavity diode lasers in the Littrow

configuration for our K-Rb machine; these use non-AR-coated diodes from Hitachi

and Sharp. But for molecular spectroscopy, we use AR-coated (coated either

in JILA or commercially from Eagleyard) diode lasers mostly in the Littman

configuration. This configuration, although it usually gives less available laser

power, has the advantage that the output does not steer within a large frequency

tuning range. For our current setup, we manipulate the internal states of KRb

using a pair of diode lasers in the Littman configuration as our “Raman lasers.”
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3.3.3 Ti:sapphire Comb

A stable optical frequency comb is crucial in maintaining a well-defined

phase relation between our Raman lasers, which are very different in frequency.

The basics of state-of-the-art frequency combs can be found in many JILA theses,

e.g. [77]. The purpose of this section is only to describe how we incorporate the

comb into our system and perform some basic diagnostics and characterizations.

More detail will be available in the next thesis from our project by Marcio Mi-

randa, who has been the main person responsible for operating and maintaining

the comb.

In our experiment, we use a home-built Ti-Sa frequency comb. When the

Ti-Sa is mode-locking, the laser output from the cavity is a train of pulses that are

equally spaced in time. The operating condition for the laser is measured to have

650 - 750 mW time-averaged laser power and a spectrum centered around 800 nm

with a full width half max (FWHM) of ∼ 30 nm (Fig. 3.3). Directly out of the

laser cavity, we then broaden the spectrum (shown in Fig. 3.4) using a non-linear

supercontinuum fiber (Crystal Fibre FemtoWHITE 800) with a coupling efficiency

of ∼ 30%. This broadened spectrum conveniently covers the wavelengths we are

interested in with a certain spectral holes that can be avoided with compromises

among all the wavelengths of interest. This is accomplished by fine adjustments

of the alignment and the polarization into the non-linear fiber.

The comb serves as a frequency ruler in the optical domain. Our comb is

precisely stabilized in the following way: The repetition rate, frep ≈ 756 MHz,

determined by the comb cavity length is maintained by referencing one comb

tooth to a stable 1064 nm Nd:YAG. The Nd:YAG (linewidth < 1 kHz) is locked

to a stable cavity in Jan Hall’s lab. The error signal from frep is fedback to the

PZT of a cavity mirror to actively adjust the comb cavity length. The comb offset
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Figure 3.3: Ti-Sa comb spectrum, measured directly out of the comb cavity. The
time-averaged power of the laser is ∼700 mW. The laser spectrum centered at 800
nm with a full width half max of 30 nm.

frequency fco, which can be tuned by the pump laser power into the cavity, is

usually around 50-300 MHz. The fco beat is derived from beating the 532 nm

part of the comb spectrum and the doubling of the 1064 nm part of the spectrum,

in a so-called self-referencing configuration. The fco is then locked to a stable rf

source that is in turn referenced to a 10 MHz commercial quartz clock (Wenzel

Associates). The error signal of fco is fedback to an acoustic-optical modulator to

actively adjust the pump power into the cavity.

3.3.4 Phase Locking

As I have mentioned earlier, maintaining the phase coherence of the Raman

lasers is crucial for coherent transfer molecules between internal states. Therefore,

we have to insure the two Raman lasers to not only maintaining their frequencies,
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Figure 3.4: Full spectrum of the frequency comb in our system after broadened
through a non-linear supercontinuum fiber. Operating with this spectrum, we
typically get Raman laser (690 nm and 970 nm) beats, YAG (1064 nm) beat,
and fco (532 nm and doubling of 1064 nm) on the order of 30 - 35 dB (100 kHz
bandwidth) from the noise floor.

but also have a definite and predictable phase evolution throughout the duration of

the transfer. Our coherent transfer manipulation usually takes a few µs, therefore

the relative laser linewidth has to be on the order of 10 kHz for the transfer (that

uses a few MHz Rabi frequency coupling) to be efficient. The phase coherence of

the Raman lasers are maintained through phase-locking (with current feedback

of Raman laser diodes) to our stable frequency comb. In our setup, most of the

laser power from the Raman laser system is directly sent to our vacuum chamber

for molecular internal state manipulation. We do not send the comb light to the

molecules (Fig. 3.5). The complete electronics of the locking configuration is

shown in Fig. 3.6.

From an operational point of view, our locking procedure is the following. To
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lock a Raman laser at a desired frequency, we first check the laser frequency on a

wavemeter (Bristol Instrument 621 series). The wavemeter is internally frequency

referenced to a HeNe laser. We found that the long-term drift of our wavemeter

is < 30 MHz and the short-term stability is ∼ ± 5 MHz. The absolute frequency

of our wavemeter reading as compared to the frequency referenced to a well-

characterized comb is usually about 30-50 MHz too high. Since our comb has a

repetition frequency that is relatively high at ∼ 756 MHz, our 10 MHz wavemeter

stability is more than sufficient for us to determine the closest comb tooth that our

laser beats with. Knowing the closest comb tooth’s absolute frequency (from frep

and fco) allows us to lock our laser to a desired frequency by setting the specific

comb-to-diode beat using a synthesizer (Fig. 3.6). The diode laser frequency is

coarsely tuned by a piezoelectric transducer controlling the grating laser feedback

and is finely tuned by the diode current feedback.

Frequency Comb

970 nm 
Raman Laser

690 nm 
Raman Laser

PLLPLL

To KRb 
molecules

Figure 3.5: Our Raman lasers, which we use to manipulate molecular internal
states, are phase-locked to a stable frequency comb. PLL stands for phase-lock
loop.
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Figure 3.6: Layout of our Raman laser phase lock electronics. Rf components are
labelled by MiniCircuits part numbers.
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Our coherent transfer manipulation of molecular internal states requires

time-varying couplings between internal states. These are accomplished by in-

tensity ramp of the Raman lasers. To control the laser intensity (shown in 3.7),

we send the laser through an acousto-optic modulator (AOM). We use the -1

diffracted order of the beam and control the rf power that goes into the AOM in

the following way: We first directly program our desired intensity ramps (usually

linear ramps) into an arbitrary waveform generator. The generator gives a dc

voltage signal and is then mixed with an rf frequency source of 98.5 MHz before

the mixed rf signal is amplified and sent to drive the AOM. This varying rf power

directly control the intensity of the Raman laser that is seen by our molecules.

diode/Ti-Sa
Raman laser

ZAD-2H

Agilent 33220A arbitrary 
waveform generator

L

R

I

10 MHz 
referenced

set for 50! load 
100 !

98.5 MHz
synthesizer

need to 
work at DC

Amp

AOM 0th - Bristol wavemeter and 
the comb for phase locking

-1th - experiment

RF switch
ZASWA-2-50DR+

Figure 3.7: Layout of electronics for our Raman laser intensity ramp. Rf compo-
nents are labelled by MiniCircuits part numbers.



Chapter 4

Feshbach Molecules

As was first introduced in Chapter 2.4, pairing atoms to form Feshbach

molecules was the crucial first step to making a quantum gas of polar molecules.

Feshbach molecules are exotic, extremely loosely bound molecules that only ex-

ist near a Fano-Feshbach resonance. These are scattering resonances that allow

experimenters to control interactions in a quantum gas of atoms [78, 79, 80, 81].

This powerful tool has played a key role in a number of exciting developments in

ultracold atom gases, such as realization of the BCS-BEC crossover in Fermi gases

[82], the controlled collapse of a BEC [83], and the observation of bright matter

wave solitons [84]. Here I will discuss one particular application, namely creation

of Feshbach molecules, which is relevant to our experiment. As illustrated in Fig.

4.1(a), these resonances occur when the energy of a pair of atoms in one hyperfine

scattering (open) channel is the same as the energy of a molecular bound state in

a different hyperfine (closed) channel. Because the molecule and the pair of free

atoms can have different magnetic moments, atom scattering can be tuned in and

out of resonance using precisely controlled magnetic fields. This allows atom pairs

to be converted into weakly bound molecules through an adiabatic magnetic-field

sweep across a resonance (Fig. 4.1(b))[85]. This technique of magneto-association

has been used for creation of homonuclear Feshbach molecules in studies of atomic

Bose-Einstein condensates and quantum degenerate Fermi gases [16, 86]. Creation
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of these homonuclear Feshbach molecules can be very efficient and has been shown

to depend on only a single parameter, the phase-space density of the initial gas

[87].

bound state 
in “closed” channel

colliding atoms 
in “open” channel
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Figure 4.1: (a) A Fano-Feshbach resonance occurs when the energy of a pair of
atoms in one hyperfine (“open”) channel is the same as a molecular bound state
in a different hyperfine (“closed”) channel. The system can be tuned into and
out of resonance by changing the strength of an applied external magnetic field.
(b) An appropriate magnetic-field ramp across a Fano-Feshbach resonance can
adiabatically convert pairs of atoms into weakly bound Feshbach molecules.

4.1 Heteronuclear Feshbach Molecules

To make polar molecules in the end, the starting Feshbach molecules have

to be heteronuclear. Heteronuclear 40K87Rb Feshbach molecules were first created

by rf-association in an optical lattice [23]. Subsequently, we characterized their

properties [88] and made collisional measurements [24] using the same rf asso-

ciation technique but in a single-beam optical dipole trap. The details of these

measurements can be found in J. Zirbel’s thesis [18]. One of the difficulties with

rf association in our system is that the strong rf field can couple into our electron-

ics. In particular, we find that the rf affects our magnetic field servos and cause



42

the magnetic field to change slightly. This makes the number of created Fesh-

bach molecules irreproducible. Therefore, for all the experiments discussed in this

thesis, we instead used a time-varying magnetic-field sweep across resonance to

adiabatically convert pairs of atoms to Feshbach molecules. This method produces

a few 104 molecules similar to the rf association technique, but is more robust day

to day.

The Fano-Feshbach resonance we use for molecule creation has for its open

channel the K|F = 9/2, mF = −9/2�+Rb|1, 1� state (labeled “aa” using P. Juli-

enne’s convention [89]) while the closed channel is dominated by the K|7/2, −7/2�+

Rb|1, 0� state (labeled “rb”) at a resonant field of 546.7 G [90, 91, 92]. P. Juli-

enne’s labeling convention is simply to label hyperfine states at a high magnetic

field according to their energies. The lowest energy state is labelled “a” and the

second lowest energy state is labelled “b”, etc. Since we work with molecules

composed of K and Rb, the first label refers to the hyperfine state of K and the

second label refers to Rb. The Feshbach molecule has a total angular momentum

projection along the magnetic-field axis mF = −7/2.

Before molecule creation, we first prepare an ultracold mixture of Rb and K

atoms, with each species having on the order of a few 105 atoms, at a temperature

around 200 nK in a single-beam optical dipole trap. A description of preparing

the ultracold mixture can be found in Chapter 3. A few 104 Feshbach molecules

are then created using a single linear field ramp from 8 G above the resonance to

a field around 545.90 G in 4 ms. The field is provided by a set of Helmholtz coils

(∼ 9 cm in diameter). Because of imperfections in the current servo, the magnetic

field immediately after the ramp overshoots 100 - 200 mG too low before the field

settles to the final value (stable to 20 mG) within 2 ms. The molecule binding

energy at 545.90 G is h·240 kHz. The molecular size is about 300 a0, and the closed

channel fraction is ∼ 35% [88]. The mean distance between atoms in an initial gas
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density of 1013 cm−3 is a factor of 3000 bigger than the molecule size. The gas of

Feshbach molecules typically has an expansion energy corresponding to 350 nK,

while the initial atom gas temperature is ∼ 200 nK. We have never investigated

the heating systematically. However, it could be due to an “anti-evaporation”

process from strong three-body loss near the Fano-Feshbach resonance. As we

varied the initial atomic gas conditions and changed optical dipole trap waist

many times over the years in which this thesis work was conducted, the Feshbach

molecule expansion energy varied in the range between 150 nK to 700 nK.

4.1.1 Conversion Efficiency

Making a large number of Feshbach molecules is a prerequisite for our subse-

quent experiments, and here I share some experience of optimizing heteronuclear

Feshbach molecule creation. As has been mentioned, in the case of homonuclear

Feshbach molecule creation, the phase-space density of the initial atomic gas is

a single parameter that determines the saturated conversion efficiency for a slow

ramp[87]. For a degenerate Fermi gas, up to 90% conversion efficiency from atoms

to molecules has been demonstrated [87]. For heteronuclear 85Rb87Rb molecules

where the constituent atoms are both bosons [93], it has been shown that only the

phase-space density of one gas determines the efficiency provided that the cloud

spatial overlap is good.

For 40K87Rb Feshbach molecules, the best efficiency demonstrated so far in

a single-beam optical trap is 25% using rf association [88]. According to a phe-

nomenological model that fits our data well, the relatively low efficiency comes

from two competing factors, namely, the phase-space density and the spatial over-

lap of the 40K and 87Rb clouds. There is a mismatch in the cloud sizes for the

fermionic K gas and bosonic Rb gas when the gases are well in the quantum degen-

eracy regime due to Pauli pressure for the fermions. In addition, the equilibrium
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Figure 4.2: An image of an expanded cloud of Feshbach molecules that shows a
low density region in the center of the cloud. Sine the trap frequency is low in the
horizontal direction, we probe the in-trap position of the cloud in the horizontal
direction after a short time-of-flight expansion. The hole in the density profile is
due to large inelastic loss in the region of high Rb density.

positions of the two clouds in a weak optical trap are displaced in the vertical

direction due to the balance of the optical trapping force and the gravitational

force, which is larger for the heavier Rb atoms. The best molecular conversion

efficiency was found close to T/Tc = 1 experimentally with our parameters, where

Tc is the temperature of the onset of a Bose-Einstein condensation [88].

In addition to phase-space density and spatial overlap of the clouds, KRb

Feshbach molecules suffer strong inelastic collisions, especially with Rb atoms [24].

This becomes an important issue when using a long duration adiabatic field ramp

to make molecules. In Fig. 4.2, I show an example of Feshbach molecules with

a large loss at the center due to a high Rb density gas. To avoid strong loss due

to Rb, we choose to operate at higher gas temperature where the Rb density is

lower. In the end, we typically work with a conversion efficiency of 10-20%.

4.1.2 Lifetime

Feshbach molecules are in a high vibrationally excited (high-v) state and

can be vibrationally quenched in ms time scales from collisions with residual Rb

and K atoms in our trap. Each inelastic collision results in a large energy release

and subsequently, the molecule is lost from our trap. To prolong the lifetime
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of Feshbach molecules, we remove residual atoms using a combination of rf or

microwave fields to transfer these atoms to a state with (quasi-)cycling transition

followed by resonant light pulses to heat the atoms out of the optical trap [18].

The Rb(|1, 1�) removal procedure is the following. We first spin flip Rb

from |1, 1� to |2, 2� using a pulse of microwave near 8 GHz and then apply a short

light pulse that drives the |2, 2� to |F � = 3, m�
F

= 3� cycling transition. Because

|1, 1� to |2, 2� has a large magnetic field sensitivity (2.3 MHz/G at 546 G) and

our field ramp usually takes 2 ms to settle after reaching the final field, we use an

Adiabatic Rapid Passage(ARP) of duration 200 µs where we sweep the microwave

frequency to perform the spin flip. Each ARP has an efficiency higher than 95%.

We perform the procedure (ARP + blast light pulse) three times in a 1 ms time

span starting at 1 ms after the field ramp.
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Figure 4.3: A typical KRb Feshbach molecule lifetime. Looking at the KRb
lifetime v.s. field behavior (not shown here) as compared to [24], we believe the
lifetime is limited by residual undetected K atoms. However, this is sufficiently
long to perform state transfer to more deeply bound molecular state.
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The K(|9/2,−9/2�) removal involves two spin flips and an optical transition.

The two spin flips drive |9/2,−9/2� first to |9/2,−7/2� and then to |9/2,−5/2�

both using rf-π-pulses with durations on the order of 10 µs. Finally, a light pulse of

50 µs resonant with the |9/2,−5/2� to |11/2,−5/2� transition is applied to remove

K from the trap. This is a 96%-closed cycling transition. The light is 140 MHz

red-detuned from the Feshbach molecule-free atom (K |F � = 11/2, m�
F

= −11/2�)

transition.

An alternative of K removal in the later experiments, we “hide” molecules

in a deeply bound vibrational state and then turn on the 100%-closed cycling

light on the |9/2,−9/2� to |11/2,−11/2� transition to directly remove residual K

atoms.

After the K and Rb removal procedures, the number of residual atoms is less

than the minimum number we can detect with our absorption imaging (< 3000

in the single-beam optical trap and < 1000 in the crossed-beam optical trap). A

typical lifetime for trapped Feshbach molecules is then 7 ms at 545.88 G as shown

in Fig. 4.3 (using the first K removal procedure), which is more than sufficient

for further internal state manipulation of the molecules.

4.1.3 Electric Dipole Moment

We can create a high phase-space-density gas of heteronuclear Feshbach

molecules. However, because the average separation of the two nuclei in each

molecules is relatively large, on the order of 300 a0, the two valence electrons

are only extremely weakly shared by the nuclei; therefore, the molecular electric

dipole moment is negligible. Ab initio calculations of the permanent electric dipole

moment (Fig. 4.4) as a function of the internuclear separation from Kotochigova

et al. [94] give a dipole moment of 5 · 10−11 D for KRb Feshbach molecules. Only

when the internuclear separation is smaller than 10 a0, does the dipole moment
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Figure 4.4: Calculated KRb permanent electric dipole moment as a function of
internuclear separation [94]. Feshbach molecules have a size of the order ∼ 300 a0

and a negligible dipole moment of ∼ 10−11 D. To make molecules polar, we need
to shrink the the internuclear separation, e.g. absolute ground-state molecules
have a dipole moment of ∼ 1 D.

approach its maximum value of nearly 1 D. Therefore, to make polar molecules

in the next step we want to manipulate the molecules’ internal state to reach

a deeply bound level where the molecule is small and has a significant electric

dipole moment. In thinking about this next step, it should also be noted that in

spite of the fact that Feshbach molecules are unusually large dimers, the magneto-

association step nevertheless reduces the internuclear separation from a few tens

of thousand a0 in the initial atom gas to a few hundred a0 in the molecules.

This facilitates further molecule state manipulation by providing a much larger

wavefunction overlap to deeply bound states.
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4.2 Enhancement Factor

The importance of this first step of magneto-association can be seen in a

measured enhancement of the optical excitation rate to a KRb* (KRb electroni-

cally excited) state. Here, I present measurements of this enhancement not only

for a near-threshold KRb* state, but also for a deeply bound KRb* state. This

is relevant to the use of optical transitions to bring Feshbach molecules either to

a lower vibrational state near the atomic threshold in one case (see Chapter 6)

or finally to the lowest ro-vibronic ground state (Chapter 8). The comparison, as

illustrated in Figure 4.5, is to apply a light pulse to drive a bound-bound transi-

tion from Feshbach molecules or a free-bound (photo-association) transition from

atoms to an electronically excited state to make KRb* molecules. The excited-

state molecules then subsequently decay, with the rate Γ, and are lost from the

corresponding Feshbach molecule or atom signal. This KRb* molecule creation

rate can be characterized by an exponential time scale τ relevant to the transi-

tion Rabi frequency Ω as τ = Γ/Ω2. To back out the transition-dipole-included

Franck-Condon factor (FCF) of the bound-bound or free-bound transition, we

normalize the coupling Rabi frequency by the laser intensity, Ω2/I.

In Figure 4.6, we compare the FCF enhancement of bound-bound to free-

bound transitions for a near-threshold excited state (v� = −9 of the 2(1) potential,

Eb = h ·43 GHz). In Figure 4.7, the FCF enhancement comparison is done for the

same deeply bound excited state that we use for the coherent optical transfer to the

absolute ground state, as described in Chapter 8. In Figure 4.6, the enhancement

factor is Ω2
m/Im

Ω2
a/Ia

≈ 500; while in the case of a deeply bound excited state (Figure

4.7), the enhancement factor is even higher, ≈ 5000! This large enhancement

factor reveals several orders of magnitude advantage when initiating the final

population transfer step from a weakly bound vs free atom precursor state.
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Figure 4.5: Schematic of the comparison of optical excitation rates for bound-
bound and for free-bound transitions. In both cases, the target bound state is the
same. The transition strengths are characterized by a Rabi frequency Ω. Once
molecules are in KRb excited electronic state, they decay spontaneously with a
common rate Γ. The depletion of molecules/atoms can be characterized by an
exponential time scale, e−t/τ , where τ = Γ/Ω2. By measuring the time scale, we
can compare Ω for the two cases.

4.3 Detection

Finally, before discussing the next step in creating absolute ground-state

molecules (or any deeply bound ground-state molecules), we need to consider

molecule detection. To detect molecules, we use a method that is very standard

in an ultracold atom experiment but may not be the most intuitive method for

people who work with “chemist’s molecules”.

To probe atoms, we use time-of-flight (TOF) absorption imaging. Here, the

gas is suddenly released from the trap and then imaged after an expansion time

(TOF) that is typically a few to a few tens of ms. For the imaging, a pulse of

resonant laser light illuminates the expanded gas and a CCD camera records the

shadow image of the cloud. The total number of atoms and their momentum

distribution can be obtained from these images.
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For molecules, however, imaging, or even just detecting molecules, with light

absorption is much more challenging by the complicated internal state structure

and lack of a clean two-level cycling transition. An extremely useful feature of

heteronuclear Feshbach molecules, which have a tiny binding energy at magnetic

fields near resonance, is that they can be imaged using light resonant with an

atomic cycling transition [23]. At an applied magnetic field of 546 G, which is

less than 1 G detuned from a K-Rb resonance, KRb Feshbach molecules can

be imaged using light resonant with the K atom cycling transition. When a

molecule absorbs a photon, it dissociates, after which subsequent photons can

scatter off the resulting free K atom. This gives a strong absorption signal, but

does not distinguish between Feshbach molecules and any leftover unbound K

atoms. To image only the Feshbach molecules, we remove selectively unbound K

atoms (|9/2,−9/2�) using rf transition as described in section 4.1.2. In our system,

we typically image Feshbach molecules with an efficiency of 85% as compared to

K atoms at the same magnetic field. In Figure 4.8, we show a series of TOF

absorption images of the Feshbach molecule gas. For each absorption image of

the gas, we fit the optical depth (OD) of the gas as two gaussians in the horizontal

and the vertical directions,

OD(x, z) = ODpeak · e−x
2
/2σ

2
x · e−z

2
/2σ

2
z . (4.1)

The cloud sizes, σx and σz, give information of the expansion energy of the gas:

σ2
x

=
kbT

mω2
x

[1 + (ωxt)
2] and σ2

z
=

kbT

mω2
z

[1 + (ωzt)
2], (4.2)

where ωx and ωz are the trap frequencies in the x- and the z-directions. In the

case when the expansion time is long compared to the trap period, the expansion

energy can be directly extracted from kbT = (m σ2/t2). The cloud size and its
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TOF = 1 ms

TOF = 3 ms

TOF = 6 ms

TOF = 9 ms

Figure 4.8: A series of time-of-flight images for KRb Feshbach molecules created
within 1G of the resonance field. From these images, we can extract the total num-
ber of molecules (5.3 · 104) and the expansion energy (kb·330 nK) of the molecular
gas.
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peak optical depth give information of the total molecule number,

N = σxσzODpeak(1 + 4(
∆

Γ
)2)/σ0/(eff), (4.3)

where ∆ is the laser detuning, Γ is the natural linewidth of the transition, σ0 is the

scattering cross section, and eff is the detection efficiency. From these images (Fig.

4.8), we determine that we create 5.3 · 104 Feshbach molecules, at an expansion

energy corresponding to a temperature of 330 nK.

This detection technique cannot be directly applied to deeply bound molecules.

However, by combining detection of Feshbach molecules with efficient manipula-

tion of the molecules’ internal states, we can bring ground-state molecules back to

the Feshbach state and then image. This give us information of molecule number

and their momentum distribution. This technique is very powerful for studying

the quantum behavior of a gas of polar molecules.



Chapter 5

KRb* Potentials

Producing a large number of ultracold heteronuclear KRb Feshbach molecules

with T/TF as low as 1.4 is only the first step toward the creation of ultracold polar

molecules. This is because the internuclear separation of Feshbach molecules is

still too large to have any significant electric dipole moment (Fig. 4.4). To make

ultracold polar molecules, we need to shrink the size of the Feshbach molecules

significantly. We achieved this by transferring KRb molecules into a tightly bound

internal state using a two-photon Raman technique (discussed in the next chap-

ter). The success of such a technique relies on the identification of one or more

suitable electronically excited intermediate states that bridge the very different

size wavefunctions for the initial and final molecular states. To look for a suitable

intermediate state, we started by understanding and spectroscopically probing the

KRb excited electronic potentials (KRb*). This chapter contains relevant infor-

mation concerning particular excited states and is not a comprehensive study of

KRb*.

5.1 Hund’s Coupling Cases

To study KRb excited potentials, we first need to be acquainted with some

molecular notation. Because molecules have rich internal structure, molecular

states are often described by a large set of quantum numbers. Figuring out a set of
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Figure 5.1: KRb electronic potentials (from ab initio calculations in [94] ). (a) The
potentials are shown for electronic ground-state potentials that asymptotically go
to the 4S+5S atomic threshold and electronic excited potentials that connect to
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the “good” quantum numbers is essential for understanding molecular potentials

and their spectra. A very useful and general guideline is the Hund’s cases based

on couplings between electronic and rotational motions [95]. Here, I will only

mention the relevant Hund’s cases for this work, namely case (a), (b), and (c).

5.1.1 Hund’s Case (a)

The most commonly encountered Hund’s case is Hund’s case (a). In this

case, molecular electronic orbital angular momentum L is strongly coupled to the

internuclear molecular axis and the electronic spin S in turn is strongly coupled

to L through spin-orbit coupling. Projections of L and S onto the molecular axis

are Λ and Σ. Λ + Σ = Ω is the total angular momentum projection onto the

molecular axis. Heteronuclear molecular potentials at a small internuclear separa-

tion are usually Hund’s case (a) (Fig. 5.1(a)) and can be labelled using molecular

spectroscopic notation as 2Σ+1Λ+/−
Ω , where +/− refers to reflection symmetry of

the spatial electronic wave function through the plane containing the internu-

clear axis. For Λ = 0, 1, 2, etc, the corresponding spectroscopic notations are

Σ, Π, ∆, etc. The spectroscopic notations are sometimes preceded with a letter-

or numbered-label such as X, a, b, 1, 2, etc. The potential labelled by X denotes

the absolute lowest electronic potential of the molecule. Any higher lying elec-

tronic potentials from X are labelled sequentially by a, b, c , etc for the electronic

ground potentials (or 1, 2, 3, etc for the electronic excited potentials) that have

otherwise the same spectroscopic notation.

5.1.2 Hund’s Case (b)

Hund’s coupling case (b) describes molecules with Λ = 0, e.g. X1Σ+ and

a3Σ+ of KRb. X1Σ+ described the lowest (X) electronic state of KRb that has

S = 1, Λ = 0. In this case, rotations of molecular nuclei, N , are decoupled from
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S and the nuclear spin (I).

5.1.3 Hund’s Case (c)

Hund’s case (c) usually describes molecules with a large internuclear sepa-

ration, where strong spin-orbit coupling between L and S dominates over their

coupling to the molecular axis individually. In this case, Ω is a good quantum

number but Λ and Σ are not. Therefore, potentials near the dissociation limit

(Fig. 5.1(b)) are labelled by Ω. This notation can also be used to label potentials

at short range (Fig. 5.1(a)) when Ω is emphasized (Ω is always a good quantum

number for Hund’s case (a) molecules), however, additional quantum numbers

will be required.

5.2 Near-Threshold States

Molecular spectra, although complex, usually have some regularities in the

spacing between spectra lines. The largest periodic spacing between lines of the

excited potentials near the atomic threshold 4S+5P corresponding to the spacing

of vibrational states. At this large internuclear distance, vibrational series follow

potentials that are labelled in the Hund’s case (c). Theses potentials, 2(1), 3(1),

4(1), 2(0)+, 2(0)−, etc, shown in Fig. 5.1(b) are characterized by their total

angular momentum projection, Ω. The first number 2, 3, 4 labels the progression

of the potentials according to their energy for the same Ω in the parentheses and

+/- labels the reflection symmetry of the total electronic wave function, including

spin, through a plane containing the internuclear axis. Excited molecular states

near threshold are expected to have a decent Franck-Condon overlap (apart from

considering wavefunction nodal patterns) with Feshbach molecule wavefunctions

even when their size is about 10 times smaller than the Feshbach molecules.

To look for these vibrational series, we scanned a tunable Ti-Sa laser (Chap-
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ter 3.3.1) to drive bound-bound transitions from Feshbach molecules. After tran-

sitions to KRb*, molecules spontaneously decay and are lost from our absorption

signal. Using loss spectra, we located excited vibrational series. All the frequen-

cies of the levels obtained are referenced to the transition from the 4S+5S atomic

threshold with K in |9/2,−9/2� and Rb in |1, 1� to 4S+5P1/2 threshold with K

in |9/2,−9/2� and Rb in |2, x� at 546 G. Empirically, this “reference” transition

was observed at 377111.684(4) GHz which was measured using a wavemeter. We

performed a scan from ∼ 30 GHz below the 4S+5P1/2 atomic threshold to ∼ 800

GHz (∼ 25 cm−1) below.

To identify which of the observed vibrational levels are associated with the

Ω = 1 or the Ω = 0 potentials, we looked at the hyperfine structure of the levels.

Because we conducted our search at a high magnetic field, for each Ω = 1 level,

we expected to see rich hyperfine structure that has spacings comparable to that

of rotational structure; while for each Ω = 0 level, we expected a much simpler

spectrum. A typical structure-rich spectrum of a Ω = 1 vibrational level (v� = −9,

where the minus sign refers to counting the vibrational quantum number from

the atomic threshold) is shown in Fig 5.2. Each line dip corresponds to loss of

Feshbach molecules due to the laser driving a bound-bound transition. A typical

spectrum of Ω = 0 (v� = −14) is shown in Fig. 5.3 where both 0+ and 0− are

seen. The structure associated with Ω = 0+/0− are rotational lines.

To identify the particular potential, e.g. 2(1) but not 3(1), we compared

our observed vibrational spectra to S. Kotochigova’s prediction based on her po-

tentials in [94]. Although the exact location of the calculated series may not be

accurate, the spacings between vibrational levels are usually good. To confirm our

assignment, we analyzed the vibrational spacings further. LeRoy and Bernstein

[96] and Stwalley [97] had independently shown that vibrational spacings near

the dissociation limit (i.e. near the atomic threshold) are determined only by the
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Figure 5.3: A Typical spectrum a 2(0) vibrational level (v� = −14). Here we
observe both the 0+ and the 0− components. Since their structure is similar, we
identified them through their difference in vibrational spacing with adjacent levels
(Fig. 5.4(b)). (Inset) Detailed scan of the 0− component that reveals a doublet
structure.

long-range potential. Therefore, we can relate the vibrational quantum number

v� (counting from the threshold) to their binding energy, E �
v
, by a semiclassical

equation [96, 97, 98]

v� = − 2
√

π

h(n− 2)

Γ(1/2 + 1/n)

Γ(1 + 1/n)

�
2µ C1/n

n
E(n−2)/2n

v� + v�0 (5.1)
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Figure 5.4: Vibrational series of (a) 2(1), (b) 2(0+), and 2(0−). By fitting with
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that have Ω = 1 structure but belong to a different potential, 3(1).
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where n = 6 for our van der Waals long-range potential, h is the Planck’s constant,

Γ denotes the Gamma function, µ is the reduced mass, and v�0 is a fitting offset.

In Fig. 5.4, we plot the 2(1), 2(0)+, and 2(0)− vibrational series v� vs E1/3
v�

and see that our data rarely deviating from the linear fit. We also extracted C6

from the fit using equation 5.1. This extracted C6 is about 10-20% lower from

the theory calculations. A more accurate long-range potential is characterized

by C6, C8, and perhaps C10. To get a better potential in the long-range, S.

Kotochigova adjusted her values for C6 and C8 (C10 was set to zero) by fitting

our data. Moreover, deviations from the linear relation in Fig. 5.4(a) allowed us

to distinguish vibrational levels (red points, 131.25 GHz- and 450 GHz-detuned)

that have Ω = 1 structure but belong to the 3(1) potential, which asymptotically

goes to the 4S+5P3/2 threshold. All observed levels and their assignments are

summarized in Table 5.1.

v� 2(1) (GHz) 2(0)− (GHz) 2(0)+ (GHz)
-8 28.2
-9 43.3
-10 61.8
-11 83.9
-12 108.1
-13 150.3 165 170
-14 188 213.4 215.7
-15 231 262.5 263.3
-16 284 321.2 314.7
-17 345.2 385 377.8
-18 408.5 457.08 446.7
-19 488.0 541.0 514.0
-20 572.8 628.2 616.9
-21 726.9 711.4
-22 833.9 812.6

Table 5.1: Summary of vibrational levels observed near the atomic threshold of
4S+5P. The frequencies are given for the line center of power-broadened lineshapes
and were measured using a wavemeter.
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5.2.1 v� = −14 of 2(0−)

In the last section, we identified different vibrational series in the excited

electronic states near the dissociation limit. From these data, we picked v� = −14

of 2(0−) as an intermediate state for two-photon transfer to near-threshold ground

states. In particular we chose a strong feature (indicated with an arrow) that is

isolated from other lines by ∼ 1 GHz. The isolation of the line is crucial for

working with a clean three-level system for an efficient population transfer. A

detailed scan of the feature indicated by the arrow reveals a doublet substructure.

5.3 Bridging to Deeply Bound Molecules

Performing spectroscopy near the dissociation limit of the electronic excited

states enabled us to choose a suitable intermediate state for near-threshold molec-

ular state transfer (Chapter 6). However, these near-threshold excited states are

not suitable for bridging the large difference in the molecular wavefunction of Fes-

hbach molecules and deeply bound states of the electronic ground potentials. In

Fig. 5.5, we plot the square of the total transition dipole moment (this includes

the electronic transition dipole moment square and the wavefunction overlap) for

transitions from vibrational levels of the 2(0)+(Fig. 5.5a) and 3(1)(Fig. 5.5b)

potentials to both the near-threshold v = −1 and the deeply bound v = 0 of

a3Σ+, and the deeply bound v = 0 of X1Σ+. For the deeply bound levels, we no

longer number v from threshold, and v = 0 is in fact the lowest energy level of

the potential. The transition dipole moments are calculated by S. Kotochigova

and are plotted as a function of their detuning energy from threshold. As we

can see, the near-threshold excited states are only good for near-threshold ground

states, e.g. the v = −1 state. Therefore, to find an appropriate molecular state

that can bridge v = −1 and v = 0 simultaneously, we have to choose a deeply
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bound excited state. (In fact, our initial molecular state will be weakly bound

Feshbach molecules, which would have an even weaker transition dipole moment

to the excited state as compare to the v = −1 case.) In the deeply bound regime

(where the position of the inner turning point of v = −1 has good amplitude), we

found several excited-state potentials that could serve as the bridge. To pursue

molecule internal state transfer from Feshbach molecules to the triplet or the sin-

glet rovibrational ground state, we chose to go through deeply bound vibrational

levels of the 23Σ+ potential (also labeled as 3(1) and 3(0)− according to their Ω

components).

5.4 23Σ+ and the Ω = 0− and Ω = 1 Components

Looking at the full set of electronic potential curves (Fig. 5.1), it is not

difficult to see that there are certain “coincidences” where inner and outer turning

points of an excited state vibrational level could line up well to overlap both the

Feshbach molecule state (basically at Energy = 0) and the v = 0 state of either

a3Σ+ or X1Σ+. Our choice was the vibrational levels associated with 23Σ+, which

have relatively large calculated transition dipole moments to our desired molecular

ground states and have transition frequencies that are conveniently covered by our

widely tunable Ti-Sa laser as well as commercial diode lasers. To experimentally

identify these states, since potentials in this region are usually constructed by

ab initio calculations, where there could be a large uncertainty in the predicted

energies of vibrational levels, we looked for available experimental spectroscopy

data as a guideline. The v� = 0 to v� = 13 of 23Σ+ for 39K85Rb has been reported

by [27]. Our search was guided by Kotochigova’s ab initio calculation fitted to

experimental data from 39K85Rb [27], with the appropriate mass scalings.

The 23Σ+ potential has two components in the short range that are dis-

tinguished by their quantum number Ω = 0− or 1, which in turn can be used
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Figure 5.5: Predicted transition dipole moments from vibrational level in the
electronically excited potentials (a) 2(0)+ and (b) 3(1) to v = −1 and v = 0
of the triplet ground-state potential a3Σ+ and v = 0 of the singlet ground-state
potential X1Σ+ (not shown for 2(0)+). The near-threshold excited states have
good transition dipoles only to the near-threshold electronic ground state, e.g.
v = −1, not v = 0. Therefore, to transfer from v = −1 to v = 0, we need to
choose an excited state in the deeply bound regime. For transfer to both the singlet
and the triplet rovibrational ground state, we chose two different vibrational levels
that are associated with 3(1) (or associated with 3(0), which is the same potential
but characterized by Ω = 0). The larger transition dipole moment from 3(1)
to v = 0 of X1Σ+ seems too good to be true. It turned out to be a factor of 20
smaller (400 smaller in d2), but still had the same qualitative pattern as a function
of excited-state energy. However, the reduced magnitude was still sufficient to
enable efficient transfer (Chapter 8)! All transition dipole moments shown here
were calculated by S. Kotochigova.
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to label the potentials as 3(0)− and 3(1) (Fig. 5.1). Since the two components

share the same potential, their vibrational level spacings and their wavefunction

overlap to the electronic ground states are similar. However, their electric dipole

transitions are not the same because of angular momentum selection rules. For

molecular state transfer to the triplet electronic ground state, both Ω = 0− and

Ω = 1 will work. However, for transfer to the singlet electronic ground state,

only the Ω = 1 component will have singlet-triplet mixing due to perturbations

that come from the 11Π (Ω = 1) potential [99]. Since 11Π lies above 23Σ+, we

expect that the Ω = 1 component of 23Σ+ to be pushed toward lower energy

relatively to the Ω = 0− component. The splitting between Ω = 0− and 1 is the

second-order spin-orbit coupling that was calculated in [99]. Because only the

Ω = 1 component will couple to the singlet electronic ground state, it is crucial to

spectroscopically distinguish the two components. Again by using loss spectra of

Feshbach molecules after driving bound-bound transitions, we can identify these

series. Table 5.2 summarizes all of our observed levels of 23Σ+.

5.4.1 v� = 10 of 23Σ+ (Ω = 0−)

During our first search for 23Σ+ levels, we identified v� = 8 − 12 of 23Σ+

(Ω = 0−). Because the Feshbach molecule wavefunction has lots of oscillations

in the small internuclear separation region, we observed strong variations in the

transition dipole moment as shown in Fig. 5.6. We chose the v� = 10 level as our

intermediate state for transfer to the triplet rovibrational ground state (Chapter

7). We have also scanned in more detail the v� = 10 level and observed several hy-

perfine lines that served as intermediate states to access different hyperfine states

of the triplet rovibrational ground state (Fig. 5.7). For the triplet rovibrational

ground-state molecules, we measured their permanent electric dipole moment by

measuring the level Stark shift when applying an electric field (Chapter 7.3). The
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v� Ω = 1 (GHz) Ω = 0− (GHz)
8 290359.5 290406.764
9 291709.7 291758.052
10 293049.5 293099.603
11 294431.403
12 295753.57
13 297012 297066
14
15 299604
16 300890
17 302158
18 303425
19 304685 304756
20 305949 306033
21
22 308352 308438
23 309601.4 309707.6

Table 5.2: Summary of observed vibrational levels for both the Ω = 0− and 1
components of 23Σ+.

KRb* states are also Stark shifted with electric fields. In Fig. 5.8, the measured

Stark shifts of the line that has a transition frequency ∼ 293104.055 GHz from

Feshbach molecules are listed.

Finally, we calibrated the transition dipole moment from Feshbach molecules

to v� = 10 of the 23Σ+ electronically excited potential by using both power-

broadened lineshapes and a measured one-photon excitation rate. We consider

our system as an open coupled two-level system shown in the cartoon drawing

of Fig. 5.9(b). Feshbach molecules are driven to KRb* by a laser with Rabi

frequency Ω and KRb* then subsequently spontaneous decays with a rate γ. This

decay is assumed to populate levels that are outside of the two-level system, hence

is lost. We describe our system mathematically by H = �
2




0 Ω/2

Ω/2 ∆− iγ/2



.

We first measured power-broadened lineshapes (Fig. 5.9(a)) by scanning
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Figure 5.6: Nodal pattern of the transition from Feshbach molecules to different
vibrational levels, v�, of the 23Σ+ (Ω = 0) potential.

293099.538 GHz

100 105 110 115
0

1

2

3

103.7 103.8 103.9 104.0 104.1 104.2 104.3 104.4 104.5
0

1

2

3

4

5

293xxx.x GHz

m
o

le
c
u

le
 n

u
m

b
e

r 
(1

0
4
)

 

 

  

293104.055 GHz

Figure 5.7: Detail of the structure of v� = 10 of 23Σ+ (Ω = 0). The two lines we
used to accessed different hyperfine states of the triplet rovibrational ground states
are the ones with transition frequencies of 293099.538 GHz and 293104.055 GHz
from Feshbach molecules. These specific frequencies are derived from referencing
the Ti-Sa laser to a stable optical frequency comb. The coarse frequency scale
on the y-axis were reading from a wavemeter. (Inset) Detailed structure of the
strong line centered at 293104 GHz.
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Figure 5.8: Stark shift of the v� = 10 of 23Σ+ (Ω = 0−) state of KRb*. This line
that has a transition frequency ∼ 293104.055 GHz from Feshbach molecules at
zero electric field.

the laser detuning ∆ from the resonance. For these measurements, we used three

different laser intensities (corresponding to three different Rabi frequencies Ω, with
√

I ∝ Ω) and a light pulse duration of 20 µs. The power-broadened lineshapes for

an open system is different from a closed system in that when Ω > γ, the lineshape

is not Lorentzian but rather has a flat bottom loss spectrum (see the red curve

in Fig. 5.9(a)). This can be exactly modeled by solving the given Hamiltonian

for an open two-level system. The lineshapes give us information about Ω
Γ . To

get Ω and Γ independently, we fixed ∆ = 0 and pulsed on the laser for various

times to watch the Feshbach molecule signal decay due to KRb* creation (Fig.

5.9(b)). The exponential time scale is ∝ Γ
Ω2 . Together, we obtain Γ = 6.7 MHz

(real frequency and not angular frequency) and Ω. Knowing the laser intensity

that corresponding to a specific Rabi frequency Ω and (dipole moment/(ea0))=

Ω/(109)/(0.22068)/
√

I, where Ω is in angular frequency, and I is in W/cm2, we

obtained that the transition dipole moment to be 0.004(2) ea0.
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5.4.2 v� = 23 of 23Σ+ (Ω = 1)

For two-photon transfer from Feshbach molecules to the singlet rovibrational

ground state, we chose v� = 23 of 23Σ+ (Ω = 1). Originally, we wanted to use a

higher level, v� ∼ 34, for the state transfer because the predicted transition dipole

moment to the singlet rovibrational ground-state was the largest. However, since

the vibrational levels become quite irregular in this regime due to perturbations

from three different potentials, we decided to cease the search for higher v� and

to try v� = 23. This worked!

Again this level has hyperfine structure. We have characterized three of

the states and these are summarized in Table 5.3. Each line can only be driven

from Feshbach molecules using a specific circular polarization. We do not identify

or assign their hyperfine quantum number. In addition, we have calibrated the

transition dipole moment from Feshbach molecules using the method described in

the last section. This was performed using Raman lasers with 50/50 mixture of σ+

and σ− light. We measured the transition dipole moment of the line corresponding

to transition frequency of 309602.851 GHz to be 0.005(2) ea0. Finally, the Stark

shift of the same line is shown in Fig. 5.10.

Transition freq from
Feshbach Molecules polarization ground hyperfine-state coupling

309602.753 GHz σ+ |− 4, 1/2�
309601.737 GHz σ− |− 4, 1/2�, |− 3,−1/2�, |− 4,−3/2�
309600.656 GHz σ− |− 4, 1/2�, |− 3,−1/2�, |− 4,−3/2�

Table 5.3: Summary of three hyperfine lines of the v� = 23 level of the 23Σ+

(Ω = 1) potential. Each state can only be driven from Feshbach molecules using
a specific circular polarization light. In addition, each state can couple to spe-
cific hyperfine states (hyperfine state labeling notation is discussed in Chapter 9)
of the ro-vibronic ground state through a two-photon transition from Feshbach
molecules.
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Figure 5.10: Stark shift of the v�=23 of 23Σ+ (Ω = 1). This specific line has a
transition frequency ∼ 309602.753 GHz from Feshbach molecules at zero electric
field. The line is for guides of the eyes.



Chapter 6

Coherent Two-Photon Raman Transfer

Using coherent methods to transfer atoms to tightly bound molecules has

the advantage that the transfer is state-selective, efficient, and can take away the

binding energy through the applied transfer fields (either magnetic fields, electric

fields, or laser fields). In Chapter 4, I have already introduced the first coherent

transfer method, which creates Feshbach molecules from atoms through an adi-

abatic magnetic-field ramp across a Fano-Feshbach resonance. In this chapter, I

will introduce the second coherent method, which we use to shrink the molecule

size. The discussion follows work in [26, 100].

Making high vibrational level (high-v) molecules from a BEC of atoms using

a coherent Raman transition was first demonstrated with Rb2 by Wynar et al. in

2000 [101]. Using a molecular signal that came from loss of atoms immediately

after the Raman pulse transfer, they were able to determine the binding energy

of the molecules along with the condensate mean-field energy precisely. In 2007,

Winkler et al. [25] had extended the coherent transfer idea to a more robust

method, namely, STImulated Raman Adiabatic Passage (STIRAP) [102], and

transferred Rb2 Feshbach molecules to the v = −2 level (h·637 MHz bound) with

87% efficiency. Here, the minus sign on the vibrational level refers to counting the

level from the atomic threshold, e.g. v = −1 would be the least bound level.

As STIRAP having been demonstrated for efficient state transfer for homonu-
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clear molecules to v = −2, we were certain that the same would work for our het-

eronuclear molecules, KRb. However, the final goal was to make polar molecules,

which means that the KRb molecules would have to be tightly bound. Further-

more, the v = 0 level (counting v here from the bottom of the potential) seems

special, since it is the lowest energy level and should be maximally stable. The

big challenge would then be applying the STIRAP technique to transfer molecules

between vibrational levels with very different sizes.

Here, I will introduce the two-photon Raman transfer technique by first

discussing transfer from Feshbach molecules to a high-v level, in particular v = −3.

In subsequent chapters, I will describe how we extend the technique to reach the

absolute ground state.

6.1 Three-level System

Fully coherent manipulation is the key to efficient transfer molecules between

different vibrational levels. Our transfer technique uses three molecular states,

labelled |i�, |e�, and |g�, that are coupled together by two laser fields, Ω1 and Ω2,

as shown in Fig. 6.1. Since the excited state |e� is usually lossy and short-lived,

we introduce a decay rate γ for the state |e�. In general, states |i� (the Feshbach

molecule state) and |g� (the target vibrational state) can also decay, but this will

be ignored since the time scale is usually much longer than the transfer process

in consideration. The simplified Hamiltonian of the system, after making the

rotating-wave approximation, in the basis of |i�, |e�, and |g� is

H =
�
2





0 Ω1(t) 0

Ω1(t) 2∆− iγ Ω2(t)

0 Ω2(t) 2δ




, (6.1)
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where ∆ denotes the one-photon detuning and δ denotes the two-photon detuning

shown in Fig. 6.1. When the Raman resonance condition is met, namely δ = 0,

one of the eigenstates of the system is cosθ |i� + sinθ |g� where θ = tan−1(Ω1(t)
Ω2(t)).

This state is dark in that it does not couple to the lossy |e� level. This dark state is

important because it allows, with an appropriate time dependence of the applied

coupling fields Ω1(t) and Ω2(t), the full population of |i� to be converted to |g�

without ever populating the lossy excited state |e�. This process is called STIRAP

and it provides fully coherent transfer between states |i� and |g� [102]. It is

important to note that we have assumed that there is a well-defined phase relation

between the two coupling fields. This assumption sets a challenging requirement

for lasers that couple states that are very different in binding energy.

|i�

|e�

|g�

Ω2 Ω1

∆

δ

γ

Figure 6.1: Open three-level system. The three states labelled by |i�, |e�, |g�, are
coupled by two laser fields, Ω1 and Ω2. The two laser frequencies are detuned from
|e� by ∆ (one-photon detuning). The frequency difference between two lasers is
detuned from the energy difference of |i� and |g� by δ (two-photon detuning). The
excited state |e� is short-lived with an decay rate γ that corresponds to a loss rate
from the three-level system.
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For the first experiment, we demonstrated transfer of weakly bound Fesh-

bach molecules with a size of the order 300 a0 (binding energy ∼ h · 240 kHz) to

another weakly bound state, v = −3, that has a size of 34 a0 and a binding energy

of ∼ h · 10 GHz. To do this, we identified an intermediate state that bridges the

wavefunction difference. As we have already seen in Chapter 5.2, the vibrational

level structure for the KRb excited molecular potentials near the atomic 4S+5P

threshold is very complicated. In particular, the level that associated with Ω = 1,

e.g. 2(1), have rich hyperfine structure within a 3 GHz-span around each vibra-

tional level at a magnetic field of 546 G. These nearby lines will make it difficult to

find an isolated three-level system and allow off-resonance excitations. Therefore,

we pick an intermediate state that is associated with a potential that has Ω = 0,

which greatly simplifies the hyperfine structure. The particular intermediate state

we chose was v� = −14 of 2(0−), which has a very simple structure (see Fig. 5.3)

with individual lines that are spaced by at least ∼ 1 GHz.

To transfer population from Feshbach molecules to a high-v level via the cho-

sen excited intermediate state, some knowledge of selection rules is helpful. First,

our Feshbach molecules are 80% triplet (total electronic spin S = 1) in character

[89], therefore, it is more favorable for transferring them into vibrational levels of

the triplet electronic ground potential, a3Σ+. In addition, molecules in a high-v

level are expected to have a hyperfine structure similar to the atomic hyperfine

structure at the same magnetic field (Fig. 6.2). Therefore, we label the high-v lev-

els by the same atomic hyperfine quantum numbers. For example, KRb in v = −3

with K|9/2,−9/2�+Rb|1, 1� character is labelled aa(−3) (using the same notation

introduced in Chapter 4.1.1. or [89]). KRb in v = −4 with K|7/2,−7/2�+Rb|1, 0�

character is labelled rb(−4). Since our Feshbach molecules are ∼ 65% in the “aa”

open channel and ∼ 35% in the “rb(−2)” closed channel, the two-photon Raman

transition will mostly likely only couple strongly to high-v levels with “aa” or “rb”
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character [88]. Therefore, we only looked for vibrational states associated with

aa(v) and rb(v). In addition, the hyperfine quantum numbers of the intermediate

state can impose additional selection rules. Since the intermediate state hyperfine

quantum number is harder to assign, we test the intermediate states empirically.
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Figure 6.2: KRb high-v molecular levels vs magnetic field. Molecular vi-
brational levels near the atomic threshold have a hyperfine structure derived
from atomic ones. Here all energy are referenced to the atomic threshold of
K|9/2,−9/2�+Rb|1, 1�. Each molecular level can be labelled by its hyperfine
quantum numbers and its vibrational quantum number. For example, KRb in
v = −3 with K|9/2,−9/2�+Rb|1, 1� character is labelled by aa(−3). Figure cour-
tesy of P. Julienne (2007).

6.2 Dark Resonance

Before performing STIRAP to coherently transfer population from the Fes-

hbach molecule state to a desired target vibrational level, we first need to precisely
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determine the energy of the target vibrational state. We did this using two-photon

dark resonance spectroscopy. Recall that there exists a dark state, as discussed

above, cosθ |i� + sinθ |g� where θ = tan−1(Ω1(t)
Ω2(t)), when the two-photon Raman

resonance condition is fulfilled. In the limit of Ω2 � Ω1, the dark state becomes

|i�, and therefore no loss is expected for |i� when δ = 0.

To search for a particular near-threshold vibrational level in the electron-

ically ground potential, we fixed the frequency of the laser corresponding to Ω1

to resonantly drive Feshbach molecules to the electronically excited intermediate

state. Then we scanned the Ω2 laser frequency and monitored the population

of the Feshbach molecules, after pulsing on both lasers. For this case of near-

threshold transfer, the beat frequency of the two Raman lasers is measured using

a photodiode and then phase-locked to a stable microwave source. In the absence

of Ω2, the Feshbach molecules disappear because they are resonantly excited by

the Ω1 laser field. These excited molecules will decay by spontaneous emission

into a large number of molecular and atomic states and are lost from our signal,

which comes exclusively from the weakly bound Feshbach molecules. However,

when the second laser field, Ω2, fulfills the Raman resonance condition, δ = 0,

the Feshbach molecules remain due to the formation of the dark state. Measuring

this dark resonance position then gives the energy difference between the initial

state |i� and the target state |g�. However, strictly speaking, the exact binding

energy is determined only when the Raman condition is fulfilled in the limit of

Ω1 � Ω2. When Ω1 is not � Ω2, the dark resonance position will be slightly

Stark-shifted by the corresponding to laser field Ω1. Therefore, to precisely deter-

mine the binding energy, we performed dark spectroscopy with various Ω1 laser

powers and extrapolated the energy corresponded to zero Ω1 laser power. From

this measurement, the binding energy of aa(−3) was precisely determined to be

h· 10.49238(15) GHz at 545.88(5) G [26]. We have also probed other states, such
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as aa(−2) and rb(−3), and summarize their binding energies in Table 6.1.

v binding energy/h theoretical prediction/h
aa(−2) 3.1504(10) GHz 3.1510 GHz
rb(−3) 7.31452(15) GHz 7.3187 GHz
aa(−3) 10.49238(15) GHz 10.4976 GHz
rb(−4) 21.547(1) GHz 21.5661 GHz

Table 6.1: Summary of the observed high-v levels and a comparison with the
theoretical predicted values from P. Julienne. (rb(−4) was measured using a
different phase-locked Raman laser system involving referencing the two lasers to
a frequency comb).
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Figure 6.3: A typical dark resonance spectrum, shown for rb(−3). The asymmetry
of the lineshape comes from the one-photon detuning not being exactly zero.
(Inset) A zoomed in of the dark resonance feature.

The two-photon dark resonance can also be used to characterize the transi-

tion coupling strength. Here, we take a scan of rb(−3) as an example. The dark-

resonance scan (Fig. 6.3) was achieved by scanning the Ω1 laser frequency while
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fixing the laser frequency of Ω2 on resonance (∆ = 0). We observed a one-photon

loss feature with a Lorenzian width of ∼ 6 MHz and a narrow dark-resonance

feature by definition at δ = 0. The splitting of the two minima corresponds to

the Rabi frequency Ω2.

6.3 Detuned STIRAP, v = −3

Once the precise location of aa(−3) was determined, we used STIRAP [102]

to transfer KRb Feshbach molecules into aa(−3). As discussed above, when the

two-photon detuning δ = 0 is maintained, the population of |i� can be adiabati-

cally transferred to |g� by an appropriate choice for the time dependence of the

coupling laser fields with corresponding Rabi frequencies Ω1(t) and Ω2(t). Figure

6.4(a) shows the counter-intuitive STIRAP pulse sequence used in the experiment.

First, we turned on Ω2 (corresponding laser intensity I2) to couple |e� and |g�.

While the intensity of I2 is ramped down from Imax

2 to 0 within τp = 20 µs, the

intensity of I1 (corresponding Rabi frequency Ω1) is ramped up from 0 to Imax

1 ,

thereby adiabatically transferring Feshbach molecules to the target state, with-

out ever populating the lossy intermediate state |e�. At the end of the STIRAP

transfer, I1 can be turned off. Reversing the pulse sequence in time reverses the

transfer process from |g� to |i�.

Figure 6.4(b) shows STIRAP transfer of KRb from the weakly bound Fes-

hbach molecule state to aa(−3) using the pulse sequence in Fig. 6.4(a). Since we

only detect population in the initial Feshbach molecule state, we also perform a

reverse STIRAP pulse sequence to bring the deeply bound molecules back to the

Feshbach molecule state for detection. For the data in Fig. 6.4(b), the round-trip

transfer has an efficiency of 71%. Assuming equal efficiency each way, the one-way

STIRAP transfer efficiency is 84%.

So far, we have emphasized that efficient STIRAP transfer requires main-



80

0 10 20 30−10−20−300

0.2

0.4

0.6

0.8

1

0
0.2
0.4

0.6
0.8
1

I/
Im

ax
fr

ac
ti

on

tpulse/µs

I1/Imax
1I2/Imax

2a)

b)

τp

Figure 6.4: Population transfer from Feshbach molecules to aa(−3) using a coher-
ent two-photon STIRAP transfer technique. (a) Laser intensity pulse sequence
normalized to their individual intensity maximums. The counter-intuitive se-
quence is to turn I2 on first, ramp it down while ramping I1 up. The second
half of the sequence is for a reversed STIRAP process. (b) Population transfer
corresponding to the pulse sequence in a. The data is shown as the fraction of
population in the Feshbach molecule state. The dashed line is the corresponding
population in the target state, aa(−3). The lines are fits to the data using the
model based on equation 6.1.
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taining δ = 0. But we have not yet discussed the one-photon detuning, ∆. Using

a transfer model based on equation 6.1, it is easy to show that any ∆ works pro-

vided that ∆ is not so large such that the laser coupling strengths between states

drop significantly for accessible laser powers. The most straightforward thing is to

perform STIRAP at ∆ = 0. However, there are certain advantages of performing

STIRAP at ∆ �= 0. For example, since a STIRAP lineshape is in general much

narrower than a dark resonance lineshape and we look for loss of initial-state pop-

ulation in our one-way STIRAP signal, performing detuned STIRAP (Fig. 6.6)

enables us to find the target state location more precisely. (In the case when

∆ = 0, one-way STIRAP lineshape will show loss which could be either real loss

or transfer to a “dark” state for the entire scanned range of δ.)

One interesting feature of detuned STIRAP is that the resonant position

can move depending on imbalanced Stark shifts from the coupling laser fields

and the sign of the detuning. These can all be understood in a model based on

the Hamiltonian given equation 6.1. Therefore, by performing detuned STIRAP

with both positive and negative ∆ and various intensity ratios of the coupling

lasers, we can determine the unperturbed δ = 0 location along with the laser

powers that give the coupling ratio Ω1/Ω2 = 1 (Fig. 6.5). Using the model, we

extracted Ω2/Ω1 = 1.7± 0.1 and ∆ = 50± 5 MHz for the lineshape shown in Fig.

6.6. Together with the previous measurement of Ω2 and Imax

1 =3.7(1.5) W/cm2,

Imax

2 =1.0(0.4) W/cm2, we obtained the effective transition dipole moments of

d1=0.050(15) ea0 and d2=0.17(4) ea0.

6.4 Extending STIRAP to Deeply Bound States

With coherent transfer from Feshbach molecules to a near-threshold vibra-

tional state demonstrated for a heteronuclear system, we moved on to finding

a way to reach a deeply bound state that has a large permanent electric dipole
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Figure 6.5: AC stark shift measured for the detuned STIRAP resonance. The
resonant frequency difference of the two Raman lasers depends on the coupling
field strength Ω2 due to imbalanced laser Rabi frequency. By measuring the STI-
RAP resonance using blue-detuned and red-detuned STIRAP, we can determine
the exact energy difference of the initial and the target state energy (where the
lines crosses). The crossing point happens when the two-photon Rabi frequency
ratio Ω1/Ω2 = 1, which allows us to extract the transition dipole moment ratio
very accurately. To get the binding energy of aa(−3), we add the beat frequency
plotted here with the Feshbach molecule binding energy.
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moment. There were three major challenges. The first was a technical challenge.

A “technical” limitation of our first demonstration experiment was that the two

Raman lasers were compared using a photodiode to record their beat, which was

then phase-locked to a microwave source. This technique is only applicable over

a limited frequency range. For example, the bandwidth of the photodiode was

limited to 20 GHz. To stabilize two lasers with a large frequency difference, even

one in the optical domain, one needs to have a stable reference that can bridge the

large difference. Of course, we also need to have new lasers with the desired wave-

lengths. We used a home-built stable optical frequency comb for our reference.

The relevant comb parameters and its setup are described in Chapter 3.3.3.

Once the comb was implemented, we looked for the next vibrational level,

rb(−4) ≈ h · 21GHz, and found it right away. However, using the same excited

intermediate state (v� = −14 of 2(0−)), the transition dipole moment to deeply

bound states decreases by orders of magnitude. The second challenge, as was

described in Chapter 5, was then to choose an intermediate state that can bridge

the large wavefunction mismatch between Feshbach molecules and a target low-v

state. The identification of a suitable intermediate state began with our theo-

retical collaborators, S. Kotochigova and P. Julienne, who calculated transition

dipoles for the vibrational levels of different excited-state potentials to all the vi-

brational levels in the ground electronic state. We were especially interested in

the transition dipole moments from a single excited state to both v = −1 (counts

down from threshold) and v = 0 (counts up from absolute ground state). Based

on this, they made suggestions of a few possible “routes” to the low-v levels. We

chose a route that used a similar intermediate state as the one used in the pho-

toassociation work by Sage et al. [22]. One main reason for this choice was there

were some spectroscopic data available in the relevant range for KRb of differ-

ent isotopes [27]. These relevant vibrational levels are the low-v levels associated
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with the 23Σ+ potential and are expected to have good wavefunction overlap to

the low-v levels of the electronic ground potentials. Our biggest concern was if

we could drive weakly bound Feshbach molecules directly to these low-v levels

of 23Σ+ using our experimentally available laser power. Although being slightly

skeptical of the relatively large calculated dipole moments for these transitions,

we were optimistic because of an observation we made [18] when first trying to

create Feshbach molecules. We had seen a “lucky” coincidence where our 1075 nm

(linewidth of 1 nm) optical trap laser was causing loss of the Feshbach molecules.

This could be because the light was driving Feshbach molecules to perhaps v� = 0

of the 23Σ+ potential [18]. Now, we have experimentally identified the low-v series

of 23Σ+ as described in Chapter 5.

The final challenge was the potentially large uncertainty of the locations

of relevant low-v levels of the electronic ground potential. Our experiment, al-

though it has a high sensitivity and an unprecedented resolution for molecular

spectroscopy, has a cycle time of a minute. Therefore, it is not suitable for a large

spectroscopy scan. For this reason, we have to understand the uncertainty of the

potential in different regions of internuclear separations. (We also care about the

same thing for electronic excited-state potentials, which is discussed in Chapter

5.) For the near-threshold region that was accessed in the last section, the un-

certainty of the vibrational levels is 1%. If we scale this uncertainty directly to

v = 0 of a3Σ+ (h·7 THz) or v = 0 of X1Σ+ (h·125 THz), it would be 70 GHz or 1

THz (half of the vibrational spacing)! Luckily, Pashov et al. [28] constructed very

accurate KRb ground-state potentials for both the triplet and the singlet poten-

tials using conventional spectroscopy of 39K85Rb low-v states and matching this

with comprehensive Feshbach resonance data near the atomic threshold. After

using mass-scaling to calculate the vibrational series for 40K87Rb, the uncertainty

is expected to be ∼ 7 GHz for the triplet ground state and ∼ 10 GHz for the
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singlet ground state. One side note is that since not all the “intermediate”-v were

mapped out, the uncertainty in the intermediate region would be much higher.

After understanding the uncertainties of all v-states and solving the first

two challenges, we decided that instead of following a vibrational series from the

near-threshold region to the low-v region, we would directly jump to searching

for a v = 0 state. In particular, since going to the singlet v = 0 level requires

additional singlet-triplet mixing of the excited electronic state, we went for v = 0

of the a3Σ+ potential first.



Chapter 7

Triplet Rovibrational Ground-State Molecules

(N = 0, v = 0 of a3Σ+)

After demonstrating molecular state transfer to near-threshold vibrational

levels, we decided to move quickly toward attempting to transfer Feshbach molecules

to a low-v state directly. In this chapter, I will show that by carefully choosing

an intermediate excited state, we can coherently transfer Feshbach molecules to

the rovibrational ground state of a3Σ+ in a single-step of STIRAP. The discussion

here is based on our publication in [15].

7.1 Scheme

Our goal here is to coherently transfer molecules from the initial Feshbach

molecule state, |i�, to the triplet rovibrational ground state, |g� (N = 0, v = 0 of

a3Σ+) (Fig. 7.1). The strength of the transition dipole moment between states

comes from both the electronic transition dipole moment and the wave function

overlap, i.e. Franck-Condon Factor (FCF). Since both the initial and the final

states are predominately triplet in character, we chose a triplet intermediate ex-

cited state, |e� (v� = 10 of the electronically excited potential 23Σ+), with a favor-

able wave function overlap. To choose such a state from a “forest” of excited-state

potentials is not an easy task. However, there are guidelines one can follow. When

driving electronic transitions, it is typically a good approximation to assume that
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Figure 7.1: Diagram of the KRb electronic ground and excited molecular poten-
tials and the vibrational levels involved in the two-photon coherent state transfer
to the triplet ground state. Here, the intermediate state |e� is the v� = 10 level of
the electronically excited 23Σ+ potential. The vertical arrows are placed at the
respective Condon points of the up and down transitions. Note the different en-
ergy scales for the excited and the ground potentials. The intermediate state has
favorable transition dipole moments for both the up leg (|i� to |e�) and the down
leg (|e� to |g�), where the initial state |i� is a weakly bound Feshbach molecule
state and the final state |g� is the rovibrational ground state (v = 0, N = 0) of the
triplet electronic ground potential, a3Σ+. This listed frequencies for the up and
down transitions are the most common transitions we used. (These frequencies
are the Raman laser frequencies to the molecules and are 98.5 MHz lower from
our laser locking point due to an AOM frequency shift, see Chapter 3.3.4. for an
operational note.)
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the heavy nuclei do not move during the transition (Born-Oppenheimer approxi-

mation). Therefore, to estimate the strength of the transition dipole moment, we

look at the wave function amplitude at the same internuclear separation. Nuclei

in a vibrationally excited state molecule spend most of their time at their inner

and outer turning points, thus the wave function amplitude is the largest at these

positions. In contrast, nuclei in a vibrationally ground state molecule have the

largest amplitude at the center of the potential well. More rigorously, we find

favorable transitions using the classical Condon point argument. The Condon

point is the internuclear distance where the photon energy matches the difference

between the excited and ground-state potential energy curves. Following these

guidelines and calculations from our theoretical collaborators, S. Kotochigova and

P. Julienne, we began our experimental search and identified v� = 10 of 23Σ+

as a suitable intermediate excited state. In our scheme (Fig. 7.1), the first laser

field, λ1 (1023 nm) connects our initial Feshbach molecule state, |i�, to the excited

intermediate state, |e�, and the second laser field, λ2 (998 nm), drives the down

transition to the ground vibrational level of the electronic ground a3Σ+ potential

(|g�).

7.2 Hyperfine-rich Ground-state Structure

To search for the triplet vibrational ground state (a3Σ, v = 0), we performed

two-photon dark resonance spectroscopy as was introduced in Chapter 6.2 in the

limit of a strong Ω2 and a weak Ω1. Based on the KRb potential published by

Pashov et al. [28], P. Julienne calculated the triplet v = 0 binding energy with

a predicted uncertainty of 0.1% (7 GHz). Even this small uncertainty made the

experimental search challenging since our dark resonance features in the past

were at most tens of MHz wide. Nevertheless, we began our search by first fixing

the laser frequency of the λ1 to resonantly drive the transition from the initial
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Figure 7.2: The v = 0 ground-state level of the triplet electronic ground potential,
a3Σ+. (a) Hyperfine and rotational states of the a3Σ+ v = 0 ground-state molecule
at a magnetic field of 546.94 G, observed using two-photon spectroscopy and
scanning the down leg frequency. The measured number of Feshbach molecules
is plotted as a function of the frequency difference of the two laser fields. We
show two sets of data, vertically offset for clarity, obtained using two different
intermediate states, which are ro-hyperfine states of the v� = 10 level of the
electronically excited 23Σ+ potential. Peaks label 1 and 2 correspond to hyperfine
states in the rotational ground-state, while peak 3 corresponds to a rotationally
excited state. (b) We precisely determine the energy and the transition dipole
moments for individual states using the two-photon spectroscopy where we scan
the up leg frequency. The measured number of Feshbach molecules is plotted as
a function of the two-photon detuning. The dark resonance shown here is for the
triplet rovibrational ground state corresponding to peak 2 in (a).

Feshbach molecule state to the v� = 10 intermediate state. The λ1 laser by

itself causes complete loss of all the Feshbach molecules. We then varied the

laser frequency of the strong coupling laser (λ2), and monitored the initial state

population after pulsing on both laser fields simultaneously. When the Raman
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condition is fulfilled, the initial state population reappears (Fig. 7.2a). To our

surprise, pretty much on our first shot, we saw a signal corresponding to the v = 0

of the a3Σ+ potential. It turns out that this is because the down transition dipole

moment is strong and there is rich hyperfine structure that broadens the v = 0

line to be 30 to 50 GHz wide.

The measured binding energy of the triplet v = 0 molecules is h×7.18 THz

(corresponding to 240 cm−1) at 545.94 G. We find that the v = 0 level has rich

hyperfine plus rotational structure at this magnetic field (see Fig. 7.2(a)). Be-

cause the accessible final states are influenced by selection rules of the two-photon

transition and the quantum number of the intermediate state, we have performed

the two-photon spectroscopy using different states of the v� = 10 intermediate

level (more details on the structure of the intermediate state can be found in Fig.

5.7). In Fig. 7.2(a), the measured hyperfine spectrum of the v = 0 triplet ground

state is shown for two-photon spectroscopy going through two different states of

the v� = 10 electronically excited level. The feature labelled peak 1 is the lowest

energy state we observed in the v = 0 manifold, this state is about 15 GHz less

deeply bound than the prediction using potentials from [28]. Interestingly, the

construction of the potential [28] comes from mass scaling experimental data of

39K85Rb starting only at v = 3 and higher. Therefore, it is conceivable that the

extrapolation to v = 0 could introduce some error.

In addition to triplet v = 0 molecules, we have also observed similar ground-

state hyperfine structure for the v = 1 and v = 2 levels of the a3Σ state, with

v = 1 having a binding energy of h×6.675587(1) THz and v = 2 having a binding

energy of h×6.188766(1) THz (Here, I give binding energy corresponding to the

lowest energy state that we observed.) Combining this information with [28], one

should be able to construct the most accurate KRb a3Σ potential to date.

The quantum numbers (hyperfine and rotational) of the states of v = 0 could
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v binding energy v� = 10 to v transition dipole moment
0 7.180420(1) THz 0.004(2) ea0

1 6.675587(1) THz ∼0.004 ea0

2 6.188766(1) THz ∼0.004 ea0

Table 7.1: Summary of the lowest observed hyperfine state for v = 0, 1, 2.

in principle be identified by a careful comparison to theories, e.g. [99]. Here, I

identify the rotational quantum numbers of the three lowest energy triplet v = 0

states seen in the two-photon spectrum. The peaks labeled 1, 2, and 3 in Fig.

7.2(a) occur at a binding energy of h×7.180420(1) THz, h×7.177688(1) THz, and

h×7.177263(1) THz, respectively. Peak 1 corresponds to the lowest hyperfine state

in the rotational ground-state (N = 0), peak 2 is a different hyperfine state with

N = 0, and peak 3 is the lowest energy hyperfine state with N = 2, where N is the

rotational quantum number. This identification is based on Hund’s coupling case

(b), where spin and molecular rotation are essentially decoupled and the molecular

hyperfine structure can be understood from calculations using a separated atom

basis with the rotational progression appearing as a constant shift to all hyperfine

levels. Because of parity selection rules for optical transitions, we observe only

states with even N . The calculated rotational constant is B = 0.5264 GHz, which

gives a predicted splitting between the N = 0 and N = 2 levels of 6B = 3.158

GHz, while the observed splitting of peak 1 and 3 is 3.155 GHz. This assignment

will be verified in the next section using Stark spectroscopy.

Finally, using a dark resonance measurement such as shown in Fig. 7.2(b),

we have measured the strength of the |e� to |g� transition. Here, we fix the down

leg (λ2) laser frequency and scan the up leg (λ1) laser frequency. From the width

of the dark resonance for the rovibrational triplet ground state (peak 2), we find

that we can drive the transition from v� = 10 to the triplet v = 0 state with a Rabi

frequency of 2π ·8 MHz. This measurement used an exceedingly low laser power of
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60 µW focused to a beam waist of 55 µm. The transition dipole moment derived

from this measurement is 0.20(2) ea0, which is only one order of magnitude weaker

than a typical atomic optical transition!

7.3 Stark Spectroscopy

A quantum gas made of heteronuclear molecules in a low-v state has many

exciting new features - one of them is that the particle possesses a significant

permanent electric dipole moment that offers new possibilities for control of the

quantum gas. KRb molecules in the triplet rovibrational ground state are pre-

dicted to have an electric dipole moment of 0.05(3) Debye (D) [94]. This is nine

orders of magnitude larger than the calculated 5 · 10−11 D dipole moment of the

initial Feshbach molecules and only about one order of magnitude smaller than a

typical polar molecule dipole moment of 1 Debye. To measure the dipole moment,

we performed DC Stark spectroscopy on the three lowest energy states observed

in the two-photon spectrum (Fig. 7.2(a)). We applied a uniform DC electric field

in the range from 0 to 2 kV/cm using a pair of transparent electric-field plates

that are separated by 1.35 cm outside the glass-cell based vacuum chamber. A

detailed description of the field plates is provided in Chapter 3.2. We measured

the Stark shift using the dark resonance spectroscopy discussed above. This two-

photon spectroscopy measures the energy splitting between the initial and final

states, and because the initial state has a negligible dipole moment, any frequency

shift of the dark resonance can be attributed to the final-state Stark shift. For

these measurements we lowered the laser powers to give a dark resonance width

of 500 kHz. The measured Stark shifts vs electric field are shown in Fig. 7.3.

The effect of a DC electric field is to couple states of opposite parity. For

the a3Σ+ v = 0 molecules, the opposite parity states are even-N and odd-N

rotational states. In Fig. 7.3 we see that the two lowest energy states, which are
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the rotational ground state N = 0, exhibit similar Stark shifts. From the measured

Stark shift, we fit the data by considering rotational state mixing up to N = 5

(similar and more detailed analysis can be found in Chapter 8.3 for the singlet

vibrational ground state). This yields the molecules’ electric dipole moment to

be 0.052(2) D. The Stark shift of the third energy state, corresponding to peak

3, is measured to be about 10 times smaller than that for the peak 1 and peak 2

states. This smaller Stark shift for the N = 2 state is consistent with an electric

dipole moment of 0.052 D.
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Figure 7.3: Stark spectroscopy of triplet v = 0 molecules. Stark shifts of the
lowest three states in the triplet v = 0 manifold in Fig. 7.2(a) are measured for
a DC electric field in the range from 0 to 2 kV/cm. The bottom panel shows the
Stark shifts of the two lowest energy states which are N = 0. A combined fit to the
shifts of peak 1(solid circles) and peak 2 (open circles) with our main systematic
error from a 3% uncertainty of the electric field calculation give an electric dipole
moment of 0.052(2) D. The top panel shows the Stark shift of peak 3 (squares)
and the expected N = 2 curves calculated for an electric dipole moment of 0.052
D and different |mN | projections.
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7.4 Transfer

After our spectroscopy studies of the triplet rovibrational ground state, we

performed population transfer. We used peak 2 as the rovibrational ground-

state target for our coherent state transfer, which is performed using the counter-

intuitive pulse sequence of STIRAP[102] that I have introduced in Chapter 6.

The STIRAP beams are co-propagating in order to minimize photon recoil. The

measured time evolution of the initial-state population during a double STIRAP

pulse sequence is shown in Fig. 7.4(a). The roundtrip transfer efficiency of 31%

implies a one-way transfer efficiency of 56%, which corresponds to 3·104 triplet v =

0 N = 0 polar molecules at a peak density of 1012 cm−3. This transfer technique

allows us to reach a single quantum state without heating. The STIRAP efficiency

is limited by the final-state molecule lifetime, which we measured to be 170 µs as

shown in Fig. 7.4(b). We believe the lifetime is most likely limited by collisions

with background atoms, which can induce spin flips and cause molecules to decay

into lower lying states in the singlet electronic ground potential. (Collisions and

lifetimes of a simpler system, the absolute rovibrational ground-state molecules,

will be discussed in Chapter 10.) If so, the collisional decay rate could be reduced

either by perfecting the removal of the remaining atoms or by starting the molecule

production with atom pairs tightly confined in individual sites of an optical lattice.
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Figure 7.4: Time evolution of the initial state population during STIRAP state
transfer and a measurement of the triplet rovibrational ground-state molecule
lifetime. (a) Here we monitor the Feshbach molecule population as we apply
the STIRAP pulse sequence. Weakly bound Feshbach molecules are coherently
transferred into the triplet rovibrational ground state after a 25 µs one-way STI-
RAP pulse sequence. The measured population completely disappears since the
deeply-bound molecules are dark to the imaging light. After a 10 µs hold, we
then perform the reversed STIRAP pulse sequence that coherently transfers the
ground-state molecules back to Feshbach molecules. The molecule number after
the roundtrip STIRAP is 1.8 · 104. Assuming equal transfer efficiency for the two
STIRAP sequences, we obtain one-way transfer efficiency of 56% and an absolute
number of triplet rovibrational ground-state polar molecules of 3.2 · 104. (b) We
measure the triplet v = 0 lifetime by varying the hold time after one-way STIRAP
before transferring them back to Feshbach molecules for imaging. The lifetime is
measured to be 170(30) µs.
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The triplet work presented in this chapter provides not only a conceptual

but also a physical leap from where we started (see comparison Table 7.2). For a

long time, we doubted the feasibility of a single transfer step to efficiently bring

near-threshold molecules to a low-v state, such as the triplet rovibrational ground

state. However, looking back, although the experiment was very challenging, there

should have been no conceptual surprise of the result! Propelled by this success,

we hoped that transferring molecules to the absolute rovibrational ground state

would be a rather straightforward extension. The key is again to identify a suitable

intermediate state that not only bridges the larger wave function mismatch but

also allows the electronic spin state to change.

Feshbach molecules a3Σ(v = −3) a3Σ(v = 0) X1Σ(v = 0)
Binding Energy

(GHz)
0.00024 10.49238 7180 125313

Size (a0) ∼ 300 34 11.2 7.7
Dipole Moment

(Debye)
5×10−11 1×10−4 0.052(2) 0.57(2)

Thesis Chapter 4 6 7 (current) 8 (next)

Table 7.2: Summary of KRb ground-state vibrational level transfers we have
demonstrated. The work in this chapter showed a leap in the molecular binding
energy and the size (and the corresponding electric dipole moment) from the
previous demonstration of near-threshold transfer.



Chapter 8

Absolute Ro-Vibronic Ground-State Polar Molecules

(N = 0, v = 0 of X1Σ+)

The success of using a single step of STIRAP to transfer a large fraction

of molecules to the triplet rovibrational ground state motivated us to pursue our

long-standing goal – making a high phase-space-density gas of absolute ro-vibronic

ground-state molecules (N = 0, v = 0 of X1Σ+). The additional challenges were

i) to identify one or more intermediate states to bridge the even larger wavefunc-

tion mismatch between the Feshbach molecule state and the singlet rovibrational

ground state, ii) to have a non-trivial singlet-triplet mixing in the intermediate

excited state, iii) to build new lasers at the appropriate wavelengths, and iv) to

phase-reference and stabilize the two continuous-wave coupling lasers, which have

a much larger frequency difference.

Before our work, most people believed that multiple transfer steps would be

required to bridge the large wavefunction mismatch between Feshbach molecules

and the absolute ground state. However, as we demonstrated for KRb [15], this

turned out not to be necessary. For other bi-alkali heteronuclear molecules, we also

expect that a single excited electronic state can be identified that has relatively

strong transition strengths to both the initial Feshbach molecule state and the

absolute ground state [103]. This chapter follows discussions in [15, 104, 100].
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Figure 8.1: Schematic of the transfer from KRb Feshbach molecules to the absolute
rovibrational electronic ground state. The intermediate state was chosen to be the
v� = 23 state of the nominally 23Σ+ electronically excited potential for its good
wavefunction overlap to both the Feshbach molecules and the absolute ground-
state molecules. The three levels are coupled by two lasers, λ1(970 nm) and
λ2(690 nm), that are both referenced to a stable optical frequency comb. The
exact frequencies are given for our most commonly used pair of up and down
transitions. (These frequencies are the Raman laser frequencies to the molecules
and are 98.5 MHz lower from our laser locking frequency due to an AOM shift, see
Chapter 3.3.4.) (Inset) Schematic of a three-level system with relevant notations
introduced.
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8.1 Transfer Scheme

An appropriate choice of the electronically excited molecule state allows a

pair of cw lasers to be used for a single-step STIRAP that directly accesses the

molecule’s absolute ground state. Once the two lasers are properly stabilized, the

long lifetimes of the initial and final states ensure that the transfer process is very

efficient and reaches a single rovibrational state (N = 0, v = 0 of X1Σ+). Further-

more, the fully coherent nature of the optical transitions, which effectively drive

the weakly bound Feshbach molecules directly to the deepest bound electronic

ground state, avoids any heating due to random photon recoils.

For the creation of absolute ground-state KRb molecules, our scheme is

shown in Fig. 8.1, where the wavelengths of the cw coupling lasers are 970 nm

(λ1) and 690 nm (λ2). In our experiment, the two-photon beat can be maintained

to a few kHz linewidth by referencing each laser to a stable optical femtosecond

comb [105]. We used the vibrationally excited v� = 23 level of the nominally 23Σ+

electronically excited molecular potential [15, 99]. This state has a small mixing

with a nearby 11Π state, which make it possible to couple this excited state to

the 1Σ absolute ground state. The upward transition dipole moment from the

Feshbach molecule state to this intermediate state was determined to be 0.005(2)

ea0 (in Chapter 5.4.2).

8.2 Two-photon Spectroscopy

Before performing STIRAP to coherently transfer from the Feshbach molecule

state to the absolute ground state, we precisely determined the energy of the abso-

lute ro-vibronic ground state. We did this using two-photon Raman spectroscopy

as was introduced in Chapter 6 and 7. To search for the absolute ground state,

we fixed the laser frequency λ1 to resonantly drive Feshbach molecules to the
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Figure 8.2: Finding the absolute ground-state level (N = 0, v = 0 of X1Σ+)
of KRb. The binding energy of the absolute ground state was identified using
two-photon dark resonance spectroscopy where the laser frequency λ1 was fixed
and the frequency λ2 was scanned. The absolute ground state was found to be ∼
400 MHz less bound than the predicted location using potential in [28]. (Inset)
The coupling strength of the λ2 transition (corresponding Rabi frequency Ω2) was
determined by measuring the dark resonance with fixed λ2 laser frequency while
λ1 was scanned. The dark resonance fit that allowed us to extract Ω2 is shown as
the red line.

electronically excited intermediate state. Then we scanned the laser frequency

λ2 and monitored the population of the Feshbach molecules, |i�, after pulsing on

both lasers. When the second laser field fulfills the Raman resonance condition,

δ = 0, the Feshbach molecules remain due to the formation of a dark state. Fig.

8.2 shows the two-photon spectroscopy results. We found the ro-vibronic ground

state only ∼ 400 MHz less bound than the prediction based on the KRb poten-

tial from [28]! Our measurement precisely determined the binding energy of the

absolute ground state to be h·125.319702 THz (4180.22 cm−1) at 545.88G [15].

Knowing the energy of the absolute ground state, |g�, we can characterize

the coupling strength Ω2 (Rabi frequency) by fixing the laser frequency of λ2 on

the one-photon resonance (∆ = 0) and scanning the laser frequency λ1. The inset

of Fig. 8.2 shows the measured population of the Feshbach molecule state, |i�,

after the two-photon laser pulse. The frequency splitting between the two minima

corresponds to the Rabi frequency (Ω2) of the |g� to |e� transition. For this data,
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the 7 MHz Rabi frequency was obtained using 6 mW of laser power focused to a

40 µm beam waist; this yields a transition dipole moment of 0.012(3) ea0 for the

intermediate to the ground state transition.

8.3 Stark Spectroscopy Analysis

The same form of two-photon spectroscopy in the last section can also be

used to map out the energy splitting of states |i� and |g� as a function of an applied

electric field. In the case where the initial state |i� has a negligible dipole moment,

such as a Feshbach molecule, the measured Stark shift comes solely from the final

state |g�. This allows us to measure one of the most exciting properties of the

ro-vibronic KRb molecules – their permanent electric dipole moment! It is worth

mentioning that many theoretical efforts went into calculating the KRb permanent

electric dipole moment over the last decade. However, these calculations are

extremely difficult and each theoretical group gives a different result ranging from

0.5 Debye to 1.2 Debye. (A summary of theoretical results can be found in [106].)

To understand the effect of an applied electric field, I wish to first point out

the difference between a magnetic dipole moment and an electric dipole moment.

A magnetic dipole moment is an intrinsic property of a spin. Even in the presence

of a miniscule magnetic field, magnetic dipole moments exist and take a fixed

value. Electric dipole moments, on the other hand, are usually an induced dipole

whose magnitude depends on the strength of the electric field. Let us take KRb

molecules as an example. The electric dipole moment, pointing from the K nucleus

to the Rb nucleus, comes from the fact that the two valence electrons in KRb

prefer to be near the K nucleus. Without an external electric field, we could not

fix the orientation of the molecular axis and the averaged electric dipole moment

is therefore zero.

KRb singlet (1Σ) molecules have no electronic spin or orbital angular mo-
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mentum. Their total angular momentum apart from the nuclear spin comes solely

from their rotational quantum number, N , which describes the rotation of the

molecule about the molecular axis. The external electric field couples states of

opposite parity and thereby polarizes molecules along the field direction. For

singlet KRb molecules, these opposite parity states are rotational states. The

Hamiltonian in the basis of |N mN�, where mN is the projection of the rotational

state along the field direction, has two terms. The first term is the rotational

energy without the presence of an electric field and the second is the Stark effect:

�N mN |H|N � m�
N
�

= B · N(N + 1) δNN �,mNm
�
N

− d · ε ·
�

(2N + 1)(2N � + 1)(−1)mN




N 1 N �

−mN 0 m�
N








N 1 N �

0 0 0





where B is the rotational constant, d is the permanent electric dipole moment,

and ε is the magnitude of the external electric field. The factor that modifies d · ε

is a geometric factor came from rotating from the molecular fixed-frame to the

laboratory frame. The geometric factor, in the three-j symbols form, ensures that

electric field only mixes states with the same mN and that |N mN� and |N −mN�

are degenerate.

Since our molecules are in the ro-vibronic ground state, we are mainly in-

terested in the Stark effect of the rotational ground state, |0 0�. In principle,

this state will mix with all |N 0� states and therefore we have to diagonalize an

infinitely large matrix. However, the dominant contribution of the Stark effect

comes from the |1 0� state, so in practice we only need to consider up to a finite

maximum rotational quantum number, Nmax. To evaluate what Nmax will be

sufficient, I calculate the saturated value for the electric dipole moment vs Nmax

(Fig. 8.3). For this calculation, the saturated dipole moment is considered at an
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electric field that is much larger than we can achieve experimentally, 100 times

the critical electric field (ε0 is defined when B/(d ·ε) = 1. For singlet rovibrational

ground-state molecules, ε0 ≈ 4kV/cm). From Fig. 8.3, we see that the saturated

value stops growing for Nmax > 5 and is around 92% of the “permanent electric

dipole moment.” 1 Therefore, for the subsequent analysis, I consider mixing of

states up to N = 5. 2

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8
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Nmax

|deff |
d

Figure 8.3: Calculation of the saturated electric dipole moment of the N = 0
state vs the maximum rotational state that is included in the calculation. For
Nmax = 1, the saturated value |deff | = d

dε
Estark = d/

√
3. As Nmax increases,

the saturated polarization approaches a value � 90%, but never reaches 100% at
100 ε0. The dipole moment will reach 100% only in the limit of infinitely large
electric field. For further Stark spectroscopy analysis, we diagonalized the Stark
Hamiltonian with Nmax = 5.

1 The saturated dipole moment will reach the full “permanent electric dipole moment” only
in the limit of ε→∞ and N →∞.

2 It is worth mentioning that for ε < 2ε0, which is what we can achieve experimentally, the
saturated dipole moment is 10% lower if considering Nmax = 1 and 0.2% lower if considering
Nmax = 2 as comparing to considering Nmax = 5.
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Figure 8.4 shows the measured Stark shifts (relative to the zero electric field

case) for the N = 0 and the N = 2 states of the v = 0 level of KRb. The splitting

of N = 0 and N = 2 state at zero electric field measures 2 · (2 + 1) B. From the

splitting, we extracted a rotational constant of B = 1.1139(1) GHz. Finally, with

the measured rotational constant, we fit the N = 0 Stark shift data to the Stark

effect calculated including the mixing of rotational states up to N = 5 and extract

that the permanent electric dipole moment is 0.566(17) D[15].3 The 3% error bar

is a systematic error from our estimated uncertainty in the external electric field

(see Chapter 3.2). We have also measured the Stark shift for the N = 2 state.

This data is consistent with the dipole moment of 0.566 D that we extracted from

the N = 0 Stark shift.
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Figure 8.4: Stark spectroscopy. The measured Stark shift of the rovibrational
electronic ground state of KRb is shown. From the measured Stark shift, and using
the rotational constant extracted from the measured energy difference between the
N = 0 and N = 2 levels at zero field, we found the v = 0 KRb permanent electric
dipole moment to be 0.566 D. [15]

3 Since [15], we found a small error for the measurement of the separation of the E-field
plates. This changes our calculated electric field and hence our measured KRb dipole moment.
The updated dipole moment is 0.574(17) D. The E-field plates dimensions given in Chapter 3.2
are the updated values.
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8.4 Population Transfer

Having determined detailed spectroscopy information of the ro-vibronic ground

state, we were ready to use STIRAP [102] to transfer KRb Feshbach molecules

into the absolute ground state (Fig. 8.1). As discussed in Chapter 6 and 7, the

population of |i� can be adiabatically transferred to |g� by an appropriate choice

for the time dependence of the coupling laser fields characterized by Rabi frequen-

cies Ω1(t) and Ω2(t). The counter-intuitive STIRAP pulse sequence is to turn on

the coupling Ω2 first, and then ramp down the coupling Ω2 (by lowering the laser

intensity) while ramping up Ω1 (see Fig. 8.5(a)). The time when Ω2 and Ω1 are

both > 0 is when the transfer actually occurs. At the end of the STIRAP transfer,

Ω1 can be turned off.

Fig. 8.5(b) shows STIRAP transfer of KRb from the weakly bound Fes-

hbach molecule state to the absolute ground state. More specifically, the figure

shows the measured time evolution of the initial state (Feshbach molecule) popu-

lation during the pulse sequence shown in Fig. 8.5(a). The disappearance of the

Feshbach molecules between the time of 15 to 47 µs corresponds to transfer into

the absolute ground state. To confirm this within the constraint that we can only

detect Feshbach molecules, we add a reverse STIRAP pulse sequence to bring

the deeply bound molecules back to Feshbach molecules for detection. For the

particular dataset in Fig. 8.5(b), the round-trip transfer has an efficiency of 67%.

Assuming equal efficiency each way, the one-way STIRAP transfer efficiency to

the absolute ground state is 81%. Our detection method is perhaps non-standard

in that it does not use direct detection of the ground-state molecules. However,

this method works well because the STIRAP transfer is efficient and because ab-

sorption imaging of the Feshbach molecule gas has good signal-to-noise, similar

to that typically obtained for ultracold atom gas imaging. Furthermore, this de-
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Figure 8.5: (a) Intensity vs. time for the round-trip STIRAP pulse sequence. The
actual transfer step (ramping down the intensity of one laser field while ramping
up the other) takes 4µs. (b) Initial state (Feshbach molecules) population during
the STIRAP pulse sequence. The initial state population vanishes after being
transferred to the absolute ground state in the first 4 µs period when both coupling
laser fields are on. To detect the ground-state molecules, a reversed STIRAP
transfer (the second 4 µs period when both coupling laser fields are on) is used
to bring these molecules back to Feshbach molecules. Assuming equal transfer
efficiency each way, the one-way STIRAP efficiency is 81% [104, 100].
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tection is convenient in that it is completely compatible with our ultracold gas

apparatus. The reverse STIRAP step (which takes ∼ 4 µs) can be viewed simply

as an internal state manipulation that is part of the detection sequence for probing

the ro-vibronic ground-state molecules.
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Figure 8.6: STIRAP lineshape after round-trip STIRAP (the axis of molecule
number shown here has to be scaled up by 30% due to Feshbach molecule detection
efficiency (85%) and imaging OD saturation (90%) that were not accounted for).
We optimize STIRAP transfer by varying the two-photon detuning of the two
Raman lasers, δ. Here we achieved one-way transfer efficiency > 90%. The single
red point is measured after one-way STIRAP. The line is only for the guide of the
eyes.

The data shown in figure 8.5 was taken with both the two-photon detuning

and the one-photon detuning on resonance (δ = 0 and ∆ = 0). We saw in Chapter

6 that maintaining ∆ = 0 is not crucial and detuned (∆ �= 0) STIRAP also works.

The usual one-photon linewidth is large (> 10 MHz) compared to other frequency

drift in the system, e.g. magnetic field slow drift. However, maintaining the two-
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photon resonance δ = 0 is crucial. For δ �= 0, STIRAP sequence populates the

excited state and molecules are lost. Experimentally, we optimize the two-photon

detuning by taking a lineshape as shown in Fig. 8.6. The width of the lineshape

depends on the Rabi frequency of the two coupling lasers as well as the duration

of the STIRAP transfer. The round-trip STIRAP lineshape in Fig. 8.6, which

has a linewidth of ∼ 700 kHz, was taken using a 4 µs one-way transfer pulse and

coupling laser fields with Rabi frequencies of a few MHz. This lineshape shows our

optimized results with one-way transfer efficiency > 90%, which corresponding to

> 5.4·104 KRb polar molecules in their absolute ground state.

8.5 Trapped Molecular Temperature and Density

We have demonstrated that transferring molecular population to the abso-

lute ground state using STIRAP is robust and efficient. In addition, because of the

coherent and the efficient nature of the transfer, there should be no heating during

the transfer process. However, there can remain a small momentum recoil of the

molecules caused by the two-photon Raman process. This is minimized by having

the two laser beams for STIRAP be co-propagating. With this configuration for

our KRb transfer, the calculated momentum kick corresponds to an energy of only

kb·13 nK. This kick is not random, so it is not heating. Fig. 8.7 shows a measure-

ment of the molecular gas temperature using time-of-flight absorption imaging

for Feshbach molecules before and after round-trip STIRAP transfer. We do not

observe heating in the transfer process [104]. This is especially crucial because

we rely on the reversed STIRAP sequence as part of our detection scheme that

gives information about the number and the expansion energy (temperature) of

the absolute ground-state molecules.

For data taken with short hold times (∼ 100 µs) in the absolute ground

state (of course, the reverse STIRAP would provide a reverse recoil kick), we
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Figure 8.7: We can measure the expansion energy of Feshbach molecules before
and after a round-trip transfer to the absolute ground state. The hold time in the
absolute ground state was 20 µs. Within their uncertainty, the two measurements
give the same gas expansion velocity, and there is no observable heating during
the STIRAP transfer process.

saw that the STIRAP transfer process itself does not introduce heating of the

gas. However, since Feshbach molecules and ro-vibronic ground-state molecules

have different AC polarizibilities at our optical trap wavelength, they see slightly

different optical trapping potentials. Therefore, we observe the excitation of a

density oscillation, or a breathe mode, that occurs at twice the trap frequency.

The oscillation of the ground-state molecule cloud is seen immediately after the

transfer (Fig. 8.8, measured in our crossed-beam dipole trap). The breathing

damps out in a timescale of 50 ms most likely due to anharmonicity of the trap

and the excitation energy then appears as a heating of the gas.

The AC polarizibility, α, can be directly extracted from the breathe fre-

quency at a corresponding optical trap intensity. Another method to extract

α is to perturb the equilibrium position of the trap and then measure the fre-
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Figure 8.8: The molecular cloud exhibits a breathe motion as a function of time af-
ter the STIRAP internal state transfer from Feshbach molecules to the ro-vibronic
ground state. Molecules in these two internal states have different AC polarizibil-
ities, and therefore see an optical trapping potential with different strengths. The
breathe motion damps out on a time scale of 50 ms. (This was measured in our
crossed-beam optical trap.)
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Figure 8.9: Molecule cloud center-of-mass motion after perturbing optical dipole
trap by shutting it off for 0.5 ms [104]. (a) Feshbach molecules slosh frequency is
νFeshbach = 190(3) Hz and (b) Ro-vibronic ground-state molecule slosh frequency
is νX1Σ = 175(5) Hz. (This was measured in our single-beam optical trap.)
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quency of the resulting cloud slosh. Fig. 8.9(a) and (b) (measured in a single-

beam optical trap) are slosh measurements for Feshbach molecules and ro-vibronic

ground-state molecules, respectively, at the same trap intensity. The optical

trap here uses a multi-mode 1090 nm laser. The measured slosh frequencies are

νFeshbach = 190(3) Hz for the Feshbach molecules and νX1Σ = 175(5) Hz for the

ro-vibronic ground-state molecules. The AC polarizibility ratio αX1Σ/αFeshbach =

ν2
X1Σ/ν2

Feshbach
= 0.85(5), where the Feshbach molecules have an AC polarizibil-

ity αFeshbach = 5.7 · 10−5 (MHz/W/cm2) that is the sum of the K and the Rb

polarizibilities [107].

Combining information of the number (detection efficiencies due to STIRAP

transfer efficiency and Feshbach molecule detection efficiency have to be taken into

account), the temperature, and the trap frequencies of ro-vibronic ground-state

molecules, we can calculate their peak density in the optical dipole trap and the

normalized temperature T/TF , where TF = �ω̄

kb
(6N)1/3, ω̄ being the geometric

mean of the trap frequency, is the Fermi temperature of the gas. Typically, the

peak density of the gas is 1012 cm−3 for a temperature of a few hundreds of

nanoKelvins. The coldest gas of absolute ground-state molecules we achieved was

at 160 nK with T/TF = 1.4, and was created with STIRAP from the coldest

Feshbach molecule gas we could produce. This T/TF achieved is only a factor

of 2 away in temperature and a factor of 15 away in phase-space density from

quantum degeneracy.

The realization of a high phase-space-density gas of ro-vibronic ground-state

polar molecules opens new and exciting prospects for studying electric-field con-

trolled dipolar interactions in a quantum gas, and modeling exotic many-body

physics Hamiltonians. At the same time, from a practical point of view, we have

just begun to learn how to work with and manipulate these molecules. These

singlet ground-state molecules do not have an electronic magnetic moment since
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their total electronic spin is zero. (They do however have a much weaker nuclear

magnetic moment.) In our first experiments realizing STIRAP transfer to singlet

ground-state molecules [15], we used an atom trap that had a magnetic poten-

tial providing additional confinement along the weak direction of the single-beam

optical trap. This magnetic confinement was significant for atoms and for Fesh-

bach molecules, but did not affect the ro-vibronic ground-state molecules. This

resulted in rapid axial expansion of the ground-state molecular cloud after the

STIRAP transfer. In addition, there could be extra potential energy given to the

ground-state molecules if the magnetic and the optical trap centers were not ex-

actly overlapped. Eventually, we replaced the single-beam optical dipole trap by a

crossed-beam dipole trap (described in Chapter 3.1) to increase the confinement,

particular in the weak direction of the original optical trap. On the flip side, one

advantage of a small, almost negligible magnetic moment of the molecules is that

we can ramp the magnetic field in any time scale and do not have to worry that

it affects the molecules.

In the next chapters, I will present experiments concerning manipulation of

this tiny nuclear magnetic moment and studying the dependence of collisions of

ro-vibronic ground-state molecules in a single hyperfine state.



Chapter 9

Identifying and Manipulating Molecular Hyperfine States

In the last chapter, we discussed the manipulation of KRb molecules’ rota-

tional, vibrational, and electronic state quantum numbers. To control the com-

plete internal states of a molecule, we also need to address its hyperfine state.

Full control of all the internal state quantum numbers is a prerequisite for further

experiments with a quantum gas of polar molecules where collisions and interac-

tions depend on the quantum statistics. The discussion in this chapter follows our

work in [108].

Unlike the triplet molecules (3Σ, Chapter 7) that have a total electronic

spin S = 1 and have hyperfine splittings on the order of rotational splittings (∼

GHz), singlet molecules (1Σ) have S = 0 and a hyperfine structure that comes

from their nuclear spins (with energy splitting < MHz). Their hyperfine splittings

come from two contributions, with the nuclear Zeeman effect (
−→
B ·−→I ) dominating

over the spin-spin coupling (
−→
IK · −→IRb) at magnetic fields > 20 G. In this regime,

we can label hyperfine states by the individual nuclear spin projections of the K

and the Rb nuclei, |mK , mRb�. Because K has a nuclear spin IK = 4 and Rb has

IRb = 3
2 , there are a total of 36 hyperfine states (Fig. 9.1(a)) for the ro-vibronic

ground state. The hyperfine energy splitting due to ∆mK = ±1 is ∼ h · 130 kHz

and for ∆mRb = ±1 the splitting is ∼ h · 760 kHz at 546 G. These small energy

splittings are a lot more difficult to resolve compared to the hyperfine structure
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of triplet molecules. However, their energy scales are still about 10 - 100 times

larger than the thermal energy of our gas at a few hundreds of nanoKelvins.
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Figure 9.1: Hyperfine structure of ro-vibronic ground-state KRb molecules at 546
G. (a) There are 36 total hyperfine states that can be labelled by their nuclear
spin projections |mK , mRb�. The lowest hyperfine state is | − 4, 3/2�, circled in
red. The energy splitting between states with ∆mK = ±1 is ∼ h · 130 kHz, while
the splitting for ∆mRb = ±1 is ∼ h ·760 kHz. (b) Observed hyperfine states in our
STIRAP transfer. The blue circles correspond to data taken using a single circular
polarization two-photon STIRAP and the green triangles correspond to data taken
using mixed polarization. From the selection rules and the energy splitting among
features, we can assign the observed final states as having corresponding quantum
numbers of |− 4, 1/2�, |− 3, −1/2�, and |− 4, −3/2�. The lines through the data
are only guides to the eyes.
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9.1 Identify Hyperfine States

We first identified what hyperfine state we populated in our STIRAP trans-

fer to ro-vibronic ground-state molecules. The keys to identifying the specific

hyperfine state(s) populated after STIRAP transfer were to understand the selec-

tion rules and to spectroscopically resolve different hyperfine states by narrowing

down the STIRAP linewidth. In our setup, the Raman lasers for the two-photon

STIRAP transition are co-propagating along the magnetic-field direction (see Fig.

3.1) Using a quarter waveplate, we can vary polarization of the two Raman laser

beams to both have the same pure circular polarization or to both have a mixture

of σ+ and σ−. Conservation of angular momentum tells us that the two-photon

transition only allows the change of total angular momentum, ∆ mF = 0, 2, or

−2. Since the Feshbach molecules has mF = −7/2 (see Chapter 4.1), the final

molecule state after transfer must have mF = −3/2, -7/2, or -11/2.

Our ability to spectroscopically resolve different hyperfine states depends on

the linewidth of the STIRAP transfer, which is in turn set by the STIRAP pulse

duration. To resolve different hyperfine states, we narrowed down the linewidth

as compared to the one in Fig. 8.6 by applying a longer STIRAP pulse (15

µs). We observed a total of three different hyperfine states (Fig. 9.1(b)) when

we iterated through three different ro-hyperfine states of the electronic excited

level (Table 5.3). Two of the final hyperfine states were accessed through the

two-photon transition where both photons had the same polarization (blue circles

in Fig. 9.1(b)), while one of the final hyperfine states was accessed only when

both photons had a mixture of polarizations (green triangles in Fig. 9.1(b)).

From selection rules and the relative energies, we identified the three states as

|mK = −4, mRb = 1/2�, |− 3, −1/2�, and |− 4, −3/2�.

Out of the three intermediate excited states in Table 5.3, the one with the
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transition frequency of 309602.753 GHz only couples to |− 4, 1/2�. The intrinsic

selection rule of this intermediate state guarantees that we always populate a

single hyperfine state without having to worry about polarization and to narrow

STIRAP lineshapes.

9.2 Manipulate Molecular Hyperfine States

Using STIRAP, we can populate ro-vibronic ground-state molecules in a

single hyperfine state. However, because our starting Feshbach molecules have

mF = −7/2, using a two-photon transition in our setup will not allow us to

directly populate molecules in the lowest hyperfine state, | − 4, 3/2�, which has

mF = −5/2. Reaching the lowest hyperfine state of the ro-vibronic ground-state

has turned out to be important for studying collisional stability of these molecules.

9.2.1 State Transfer to the Lowest Hyperfine State

To reach the lowest hyperfine state (| − 4, 3/2�), we can in principle start

by populating molecules in | − 4, 1/2� and then drive a nuclear spin transition.

However, this nuclear magnetic transition (mRb = 1/2 to mRb = 3/2) couples only

weakly to external magnetic field. Moreover, this transition is nearly degenerate

with the spin flip of mRb = 1/2 to mRb = −1/2, where the energy difference is

only about 20 Hz out of 760 kHz. Therefore, the straightforward single nuclear

spin flip does not work for us.

To manipulate nuclear spins, we came up with a general scheme that relies

on electronic dipole transitions involving the rotational excited state N = 1 [108].

Since the transition relies on a large electric dipole moment, this method requires

polar molecules with a permanent electric dipole moment.

Before we drive transitions from N = 0 to N = 1, our theorist friend Goul-

ven Quéméner first calculated the N = 1 hyperfine structure at 545.9 G. This
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calculation included states of rotational projection mN = 0, 1, and -1 onto the

magnetic field axis (which usually would thought to be degenerate in the presence

of zero electric field) and the hyperfine states, using the relevant ab initio param-

eters from [109]. Together, there are a total 3 × 36 = 108 states. The splittings

of states differing only in mN are about a few hundreds of kHz. These splittings

come from interactions of the nuclear electric quadrupole moments of the 40K and

87Rb nuclei and the electric-field gradients created from molecule’s electron cloud.

This mechanism provides coupling between nuclear hyperfine states and rotation

and can serve as a means to manipulate hyperfine states!

|0, mI�
|1, mI�

| − 1, mI�

|0, mI�

σ−
σ+

π

N = 1

N = 0

E

|0, mI�

π

N = 1

N = 0

E |0, mI ± 1� + δ| ± 1, mI�

σ±

|0, mI ± 1�

(a) (b)

∆m = ±1

Figure 9.2: A general scheme of hyperfine state manipulation. (a) Electric dipole
transitions between N = 0 and N = 1, which leave the nuclear spin unchanged.
(b) Strong nuclear electric quadrupole interactions mix rotations and hyperfine
states. Eigenstates considering this interaction become |0, mI ± 1�+ δ| ± 1, mI�,
with |δ|2 � 1. This allows an effectively spin changing transition from N = 0
to N = 1. With an additional non-spin-flip transition from N = 1 to N = 0,
we can effectively manipulate hyperfine states within the ro-vibronic ground-state
manifold.

To leading order, an applied microwave field (∼ 2 GHz) can drive σ+, σ−,

and π electric-dipole transitions from |N = 0, mN = 0� to |1, 1�, |1, −1�, and

|1, 0� respectively while leaving the nuclear spins unchanged. We drive these tran-

sitions using an amplified microwave source (∼ 5W) that is delivered by a waveg-



119
main state admixed state |δth|2 |δexp|2
|1 0 -4 3/2� |1 1 -4 1/2� 0.045 ≈ 0.1
|1 0 -3 1/2� |1 1 -4 1/2� 0.0085 ≈ 0.0064

Table 9.1: Mixing of different hyperfine states in the rotationally excited state
N = 1 at B = 545.9 G. We compare the theoretically calculated admixture |δth|2
to the experimentally measured admixture |δexp|2.

uide (31-cm long and 20.5×10.4 cm2 in cross-section area). The relative strength of

these transitions allows us to calibrate the strength of individual polarization com-

ponent in our microwave field. Now, the nuclear electric quadrupole interactions

for N = 1 mix states of different hyperfine characters with mN +mK +mRb being

the conserved quantity. This mixing results in eigenstates (written in the uncou-

pled basis) that have the form of |N, mN , mK , mRb±1�+δ|N, mN ±1, mK , mRb�

(or |N, mN , mK ± 1, mRb�+ δ|N, mN ± 1, mK , mRb�), where |δ|2 � 1 character-

izes the small admixtured state. The small admixture allows us to effectively have

a nuclear spin flip when driving between rotational states. Figure 9.3 show the

Rabi floppings between N = 0 and N = 1 hyperfine states. Since the electronic

dipole transition only talks to the non-spin-flip part, all transitions here have the

polarization of σ+. For a given microwave power, we can obtain relative Rabi

frequencies that characterize the admixtured fractions for Fig. 9.3(b) and (c).

The admixture measurement is summarized in Table 9.1.

With a combination of one spin flip transition from N = 0 to N = 1

and then a non-spin-flip transition from N = 1 back to N = 0, we can effectively

drive population between two hyperfine states within the ro-vibronic ground-state

manifold. We demonstrated this general scheme of manipulation by populating

molecules in the lowest hyperfine states of the ro-vibronic ground-state (Fig. 9.4).

We start with molecules in | − 4, 1/2� of the ro-vibronic ground state directly

after a STIRAP transfer. We then use a π-pulse to drive a spin-flip transition to
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Figure 9.3: Rabi oscillations on a (a) hyperfine preserving microwave transi-
tion |0, 0,−4, 1/2� → |1, 1,−4, 1/2� (b) Rb nucleus hyperfine changing transition
|0, 0,−4, 1/2� → |1, 0,−4, 3/2�+ δ|1, 1,−4, 1/2� (c) K nucleus hyperfine changing
transition |0, 0,−4, 1/2� → |1, 0,−3, 1/2�+δ|1, 1,−4, 1/2�. Note the different time
axis in panel (a). The microwave power was reduced by a factor of 4 for the data
in (a) resulting in an effective decrease of the Rabi frequency by a factor of 2.

|1, 0, −4, 3/2�+ δ|1, 1, −4, 1/2�. The admixture here was measured to be about

10%. A single π-pulse efficiency is typically around 90-95%. Then we perform

another π-pulse to drive the non-spin-flip transition to |0, 0, −4, 3/2�, and thereby

populate the lowest energy state!

9.2.2 More Hyperfine Spectroscopy

The manipulation scheme introduced in the last section is general and can

be applied to move population anywhere within the ro-vibronic ground-state man-

ifold. Here we present a summary, Table 9.2, of microwave hyperfine state spec-

troscopy where we map out all transitions connecting to the initial |0, 0, −4, 1/2�

state. One exception was the transition to |1, −1, −3, 1/2�, which we were unable

to measure because the transition is weak and lies very close to two other strong
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(2.227 765 GHz)
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Figure 9.4: The specific scheme we used to transfer molecules from |0, 0, −4, 1/2�
to the lowest hyperfine state |0, 0, −4, 3/2� at 546 G.

microwave transitions.

Using all our measured transition frequencies, G. Quéméner had used root-

mean-square fit to extract rotational constant B = 1.113950(5) GHz and the

electric quadrupole term coefficients eqQK = 0.45(6) MHz and eqQRb = −1.41(4)

MHz. The electric quadrupole moment terms are 10-30% different from the ab

initio calculations in [109].

The general scheme of manipulation of hyperfine states allowed us to popu-

late molecules in a single hyperfine state and the lowest energy state. This is the

first time that we have the exquisite control of all internal quantum states of ultra-

cold molecules, and this is extremely crucial for the collisional studies presented

in the next chapter. Moreover, many proposals recently have been exploiting pos-

sibilities of using microwave transitions that couples rotational states for shielding

inelastic collisions [110] and studying exotic many-body physics [39, 40, 111]. Our

detailed hyperfine spectroscopy gave a realistic picture of the rich structure of a

“single” rotational line that needs to be taken into consideration for such propos-

als.
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State i state j exp. (kHz) theory (kHz) abs. diff.

|0 0 -4 1/2� |1 1 -4 1/2� 2227 837(5) 2227 835 2
|0 0 -4 1/2� |1 0 -4 1/2� 2228 125(5) 2228 119 6
|0 0 -4 1/2� |1 -1 -4 1/2� 2227 774(7) 2227 776 2
|0 0 -4 1/2� |1 0 -4 3/2� 2227 009(2) 2227 008 1
|0 0 -4 1/2� |1 -1 -4 3/2� 2227 133(20) 2227 128 5
|0 0 -4 1/2� |1 0 -3 1/2� 2228 237(10) 2228 225 12
|0 0 -4 1/2� |1 1 -4 -1/2� 2228 588(5) 2228 593 5
|0 0 -4 1/2� |1 0 -4 -1/2� 2228 804(1) 2228 805 1

|0 0 -4 3/2� |1 0 -4 3/2� 2227 765(10) 2227 761 4

|0 0 -3 1/2� |1 0 -3 3/2� 2228 109(16) 2228 091 18

Table 9.2: Spectrum of rotational transitions from hyperfine state |i� within N = 0
to hyperfine state |j� within the N = 1 manifold. We compare the experimentally
measured transition frequencies to the theoretical calculation.



Chapter 10

Ultracold Chemistry and Inelastic Collisions

In the last two chapters, we have demonstrated a complete control over

the KRb molecular internal-state quantum numbers, which allows us to probe

inelastic collisions one quantum state at a time. Moreover, the possibility of

putting molecules into the lowest electronic, vibrational, rotational, and hyperfine

energy state, raises an immediate question that is “can these molecules still be

lost from the trap?” If they can, “what determines the loss rate?” Since molecules

are already in the lowest energy state, the only way for them to suffer inelastic

collisions, which release energy and cause loss from the trap is through chemical

reactions. Here the exiting particles after the collisions are different chemical

species. In Table 10.1, we consider the binding energy of various types of molecules

that could be made from different combinations of 40K and 87Rb atoms. These

energy estimates allow us to assess whether a specific two-body reaction process

is allowed (exothermic) or not (endothermic) in the ultracold gas. In the sections

below, we will refer back to Table 10.1 to test each “entrant” channel for possible

reactions, and show that exothermic reactions take place at universal rates that

are determined solely by long-range interactions and the quantum statistics of

collisions.
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Molecules v = 0 binding energy (D0) reference

87Rb2 3965.8(4) cm−1 [112]
40K87Rb 4180.417 cm−1 [15]

40K2 4405.389(4) cm−1 [113]
K2Rb ∼13000 cm−1?
KRb2 ∼12000 cm−1?

Table 10.1: Summary of the relevant molecular energetics involved in possible
chemical reactions. The binding energies are given with respect to the threshold
energy for free atoms in the absence of a magnetic field. The 87Rb2 and 40K2

binding energies include isotope shifts from the data in the respective references.
The trimer binding energies are unknown and we give here crude estimates as a
sum of the binding energies of the three relevant pairs. For example for K2Rb, we
list twice the binding energy of KRb plus the binding energy of K2. Calculations
are needed and will undoubtedly change the values given here.

10.1 Atom-Molecule Collisions

We first study two-body collisions of atoms and molecules. As a prerequisite,

we assume and will verify in section 10.3 that inelastic collisions of our spin-

polarized fermionic molecules occur only at a relatively low rates.

To prepare the atom-molecule mixture, we control the atom density by

selectively removing or heating up unpaired atoms after the initial molecule cre-

ation.1 For these experiments, we typically work with an atom number about 5

to 15 times larger than the molecule number. All atoms and molecules are pre-

pared in their lowest energy states at 545.9 G. Specifically, K atoms are in their

|F = 9/2, mF = −9/2� state, Rb in |F = 1, mF = 1�, and KRb in | − 4, 3/2 >.

1 The procedure of removing selective amounts of K is the following. We partially transfer
the population of K atoms from |F = 9/2, mF = −9/2� to |9/2, −5/2� using two successive rf
pulses. We then clean out K atoms in the |9/2, −9/2� state using resonant light as described
in Chapter 4.1.2. Once they are heated out of the trap, we again use rf pulses to spin flip K
|9/2, −5/2� atoms back down to |9/2, −9/2�. To selectively vary the density of Rb, we perform
a complete spin flip from |1, 1� to |2, 2� and then turn on resonant light for a duration between
1 µs to 10 µs. The resonant light both removes Rb atoms and heats up the remaining gas. After
the resonant light pulse, Rb atoms are transferred back to the lowest hyperfine state |1, 1�. We
then apply an additional resonant light pulse to remove any residual Rb in |2, 2�, thus ensuring
that all Rb atoms are in the |1, 1� state.
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Here F is the total atomic spin and mF is the spin projection. We performed

two separate experiments, one with a combination of K and KRb and the second

with a combination of Rb and KRb. In both cases, the background of atoms in

the other, undesired, atomic species was less than 1000 atoms, corresponding to a

density below 5×109 cm−3. Since both the atoms and the molecules are prepared

in their lowest energy states, trap loss due to inelastic spin-changing collisions is

not possible. However, loss from chemical reactions for the case of K + KRb is

energetically allowed since K + KRb → K2 + Rb is exothermic, while Rb + KRb

→ Rb2 + K is endothermic (Table 10.1).
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Figure 10.1: Sample decay curves for the molecular number when subject to col-
lisions with K atoms (circles) and with Rb atoms (triangles). All species are
prepared in their lowest energy internal states. The atom numbers are 5 to 15
times higher than the molecule numbers. The reduced initial molecule number for
KRb+Rb is due to the collisional quenching of the initial weakly bound KRb Fes-
hbach molecules with Rb [24] before the two-photon Raman process that transfers
the molecules down to the ro-vibronic ground state.
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For each experiment, we measured the time-dependence of the trapped

molecule population. Typical molecular loss curves are shown in Fig. 10.1. To

extract the inelastic collision rate, we assume that the atom number density is

constant. This is approximately true because the number of atoms is much larger

than the number of molecules. The trapped molecular number should then decay

as
d

dt
Nmolecule = −β · Nmolecule · natom, (10.1)

where Nmolecule is the number of molecules, natom is the atomic density, and β

is the inelastic rate coefficient. We can then extract β via an exponential fit,

e−β·natom·t. As can be seen in Fig. 10.1, in general we find that the molecules are

lost from the trap at a much faster rate when K atoms are present than when a

similar density of Rb is present.

To see if the molecule loss is due to atom-molecule collisions, we measure

the dependence of the loss rate on the atom gas density. For the case of KRb +

K, we see a clear linear dependence on the atomic density and extract an inelastic

collision rate coefficient of 1.7(3) · 10−10 cm3/s. In contrast, for KRb + Rb col-

lisions, the density dependence of the loss rate is much less clear. Nevertheless,

we again fit the dependence as linear and obtain a suppressed rate coefficient of

0.13(4) · 10−10 cm3/s. A possible mechanism for a loss rate that is independent

of the atom density would be collisions of ground-state KRb molecules with un-

detected molecules in high lying vibrationally excited states. These contaminant

molecules could be produced by inelastic collisions of Rb atoms with our weakly

bound KRb Feshbach molecules [24] before the two-photon Raman process that

produces ground-state molecules. The fact that we observe a smaller initial num-

ber of ground-state molecules when Rb atoms are present is consistent with this

picture. The linear fit to β vs nRb provides an upper limit for the KRb + Rb
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Figure 10.2: Dependence of the molecule loss rate on the atomic gas density
for collisions of atoms and molecules in their lowest energy internal states. We
observe strong molecule loss with β = 1.7(3) · 10−10 cm3/s for KRb+K collisions
and suppressed loss of KRb for KRb+Rb collisions. This suggests that the KRb
decay mechanism is due to the exothermic chemical reaction K + KRb → K2

+ Rb. The corresponding reaction for Rb +KRb, Rb + KRb → Rb2 + K, is
endothermic and is not energetically possible at ultralow temperatures.

inelastic rate coefficient that is one order of magnitude smaller than what we

measure for KRb + K. This is consistent with KRb + K collisional loss due to the

chemical reaction KRb + K → K2 + Rb (at ultracold temperatures!) In the case

of KRb + Rb, there is no two-body chemical reaction pathway and the inelastic

rate for atom-molecule collisions is strongly suppressed.

We note that we only observe this suppressed loss rate when both KRb and

Rb are prepared in their lowest energy internal states at 545.9 G. We have mea-

sured an inelastic rate coefficient of the order 10−10 cm3/s when KRb is prepared
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Figure 10.3: KRb+Rb collisions when KRb molecules are prepared at an excited
hyperfine state, |−4, 1/2�, and Rb atoms are prepared in their lowest energy state
|1, 1�. We observe a strong molecular loss rate of 1.82(5)·10−10 cm3/s.

in the higher energy |− 4, 1/2� hyperfine state (Fig. 10.3) and/or Rb is prepared

in its |2, 2� hyperfine state. Therefore, for practical reasons, removing Rb atoms

is important for creating a long-lived sample of ground-state KRb molecules.

10.2 Universal Loss Rate

To understand the loss rates, we use a model based on the formalism of

multi-channel quantum defect theory (MQDT) [114, 89] to estimate their values.

In this model, our collision process is characterized by a van der Waals inter-

molecular potential, −C6/R6, where C6 is the van der Waals dispersion coefficient.

When the collisional partners come within the van der Waals length of each other,

inelastic collisions happen with some probability which we assume to be unity for
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now. The van der Waals length is defined as

lvdw =
cos(π/4)

2

Γ(3/4)

Γ(5/4)

�
2µC6

�2

�1/4

, (10.2)

where µ is the reduced mass of the system and Γ stands for the Gamma function.

The inelastic loss rate is

βinelastic =

�
4π�
µ

�
Im(a), (10.3)

where Im(a) is the imaginary part of the scattering length. In this model where

the van der Waals length is assumed to be the characteristic length, we can replace

Im(a) with lvdw, and predict a universal loss rate that is solely determined by the

long-range part of the potential.

Now, we estimate the universal inelastic collision rates for KRb + K (due to

chemical reactions) from the van der Waals length characterizing the long-range

part of the potential between the collision partners. The van der Waals lengths are

directly calculated from the corresponding C6 coefficients which are calculated by

S. Kotochigova. For KRb + K, C6 is 7019 atomic unit (a.u., 1 a.u. is EHartree ·a6
0,

where EHartree = 4.36 · 10−18 J and a0 = 0.53 · 10−10 m.), which gives a predicted

reaction rate of 1.1 · 10−10 cm3/s. The rate agrees well with the experimental

measurement, which supports the universal loss model where long-range quantum

scattering and short-range unity loss characterize the inelastic process.

10.3 Molecule-Molecule Collisions

We have learned so far that atom-molecule collisions lead to rapid inelastic

or chemically reactive loss of trapped KRb molecules. Therefore, to have a long-

lived sample of molecules and to study intrinsic collisions of molecules, we remove

all atoms using the procedure described in Chapter 4.1.2. Right away, we observed

molecular lifetimes on the order of 300 ms. However, the observed lifetime did
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not depend on the molecular density but rather depended on the intensity of our

crossed-beam dipole trap (corresponding roughly to a power law with exponent 2

to 3). Since we were using a broad linewidth (∼ 1 nm) multi-mode 1090 nm laser,

we suspected that the two laser beams might give rise to molecule loss through

a multi-photon processes. We then exchanged the dipole trap laser for a single

frequency 1064 nm laser and offset the frequencies of the two crossed beams by

130 MHz. This resulted in a longer molecule lifetime and enabled our study of

intrinsic molecular collisions.

Molecule-molecule collisions can lead to a few possible decay mechanisms.

From a purely energetic argument based on the energetics summarized in Ta-

ble 10.1, the molecule-molecule collisions have three possible exothermic chemical

reactions, namely KRb + KRb→K2 + Rb2, KRb + KRb→K2Rb + Rb, and KRb

+ KRb→KRb2 + K. All of these reactions require breaking and making molec-

ular bonds. If the KRb molecules are prepared in an excited hyperfine state, an

additional inelastic scattering mechanism is spin relaxation to a lower hyperfine

state.

The quantum statistics of the molecules plays an essential role for collisions

of molecules at a temperature of a few hundreds of nanoKelvin. At these ultralow

temperatures, collisions with large-impact parameters and correspondingly large

centrifugal barriers are frozen out and the collisions are typically dominated by a

single partial wave, with relative angular momentum quantum number L=0 (s-

wave) or L=1 (p-wave). Our KRb molecules are fermions and therefore the col-

lisional wave function has to be antisymmetric with respect to particle exchange.

For spin-polarized molecules, where they are all prepared in exactly the same in-

ternal quantum state, p-wave is the lowest allowed collision channel. The height

of the centrifugal barrier for L=1 KRb molecule-molecule collisions is kB · 24 µK.2
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This barrier height is an order of magnitude higher than kBT , where T is the

translational temperature of the molecular gas. Thus, collisions of spin-polarized

molecules are expected to proceed predominately by tunneling through the p-wave

barrier. If two molecules make it through the barrier to short range, chemical re-

actions or hyperfine state-changing can take place, leading to a loss of the entrant

channel population.

10.3.1 p-wave Collisions

The quantum nature of the collisions can be seen in the temperature de-

pendence of loss rates. The Bethe–Wigner threshold law [115] predicts that the

p-wave inelastic/reactive collision rate should be linear in temperature (∝ T ). To

look for this behavior, we first prepared spin-polarized molecules in the single hy-

perfine state |−4, 1/2� for various T ranging from 200 to 900 nK. The temperature

is measured from the expansion energy of the molecular gas after releasing it from

the optical trap. For each initial temperature, we observed the time-dependent

molecular loss and extracted a two-body loss rate β (which is 2 times the colli-

sional event rate ) by fitting the measured decay of the molecular gas density n

vs. time t (Fig. 10.4) to the solution of the following differential equation,

dn

dt
= −βn2 − αn. (10.4)

Here, the first term accounts for number loss and the measured β can be compared

to theoretical predictions. The second term accounts for density change due to

heating of the trapped gas during the measurement. Within a single measurement,

we observe an increase in temperature that is at most 30%. In the analysis for

each data set, we fit the measured temperature to a linear heating and obtain

2 The height of the p-wave barrier is determined by the molecule-molecule long-range poten-
tial, namely �2L(L+1)

2µR2 − C6
R6 , for L = 1 and C6 = 16130 a.u.
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a constant slope c. In Eq. 10.4, we then use α = 3
2

c

T+c t
, where T is the initial

temperature. The time evolution of the molecular density based on Eq. 10.4 is

n(t) =
c n0T 3/2

(c t + T )(−2n0βT 3/2 + c
√

c t + T + 2n0βT
√

c t + T )
. (10.5)

At our lowest temperature of 250 nK, the heating was 7(1) nK/s and β = 3.3(7) ·

10−12 cm3/s (Fig. 10.4). The measured dependence of β vs. T is summarized in

Fig. 10.5 (closed circles). Here, we fit the data to a power law β(T ) ∝ TL and

find that L = 1.1(2), which agrees with the predicted p-wave threshold law. This

demonstrates that indistinguishable 40K87Rb molecules at ultralow temperatures

collide via tunneling through a p-wave barrier followed by an inelastic collision in

the short range. A linear fit to the data (L = 1) yields a slope of the decay rate

coefficient of 1.2(3) · 10−5 cm3/s/Kelvin.
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Figure 10.4: A sample molecular density decay vs time for inelastic collisions
between indistinguishable fermionic molecules in the ro-vibronic ground-state of
40K87Rb. Here the molecules are prepared in a single hyperfine state, |− 4, 1/2�,
and the molecular density decays slowly with a rate coefficient of 3.3(7) · 10−12

cm3/s at T = 250 nK.
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Figure 10.5: Inelastic collision rate coefficient vs temperature for fermionic
molecules in the ro-vibronic ground state of 40K87Rb. For the lower decay coeffi-
cients, the collision rate coefficients were measured for molecules prepared in either
| − 4, 1/2� (closed circles) or the lowest energy state | − 4, 3/2� (open triangles).
We observe the loss rate increases linearly with temperature for spin-polarized
molecules, which verifies that the dominant collision channel is p-wave. A linear
fit (solid line) to the | − 4, 1/2� data yields the temperature-dependent loss rate
to be 1.2(3)·10−5 cm3/s/Kelvin. For the |− 4, 3/2� case, where the collisional loss
can only be due to chemically reactive scattering, the loss rate is similar. The dot-
ted and dashed lines are theoretical predictions from the QT model and MQDT
(describe in the text), respectively. In contrast, when the molecular sample is
prepared in a mixture of two hyperfine spin states, |−4, 1/2� and |−4, 3/2� (filled
squares), s-wave collisions dominate. Here we observe a temperature-independent
decay rate that is 10 – 100 times higher than for the spin polarized case.

We repeated this measurement for molecules in the lowest hyperfine state

| − 4, 3/2� (open triangles in Fig. 10.5). The data again show β ∝ T with a

slope of 1.1(3) · 10−5 cm3/s/Kelvin, similar to that measured for molecules in

the | − 4, 1/2� state. However, in the case of | − 4, 3/2� molecules, hyperfine

state-changing collisions are no longer possible and the only possible loss channels
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are the three chemical reactions discussed earlier. Thus, we find that the rate of

chemical reactions is determined by the p-wave angular momentum barrier and the

chemical reaction barrier must be below the collision energy. This suggests that

these reactions are barrierless and can thus occur freely at ultralow temperatures.

However, we cannot distinguish among the three possible exothermic mechanisms

at this time. Meanwhile, the fact that the same loss rate is observed for both

|−4, 1/2� and |−4, 3/2� state molecules suggests that chemical reactions dominate

the loss in these ground-state molecular collisions.

To understand the loss rates, we again use the MQDT model introduced in

section 10.2 to estimate the rates where the collision process is characterized by

combining the p-wave barrier and a van der Waals inter-molecular potential. The

MQDT formalism for p-wave collision is provided by Z. Idziaszek and P. Julienne

[116], where they derived the loss rate analytically and gave β = (11.48 · Im(a))3

(kBT/h), where Im(a) can be replaced by lvdw in Eq. 10.2. Based on C6 =16130

a.u. for KRb-KRb (calculated by S. Kotochigova), β = 0.8(1)·10−5 cm3/s/Kelvin,

which is close to the experimental result.

In addition, we also use a simple quantum threshold (QT) model developed

by Quéméner and Bohn to estimate the rate [117]. (This same model will be used

in the next chapter when describing inelastic dipolar collisions.) The inelastic

collisional cross section for indistinguishable particles (a factor of 2 bigger than

the distinguishable particle case) is given quantum mechanically by

σin

L,mL
=

�2π

µEc

|T in

L,mL
|2, (10.6)

where Ec is the collisional energy and T in

L,mL
is the inelastic transition matrix. In

the QT model, the maximum loss rate is determined by setting the |T |2 matrix

to unity for the collisional energy Ec at the height of the p-wave barrier V (i.e.

chemical reaction proceeds with unit probability once the molecules pass through
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the barrier.) When the collisional energy is below the height of the p-wave barrier,

the loss is suppressed and the rate scales linearly with collisional energy (tempera-

ture) by the Bethe-Wigner threshold law. In this regime, |T in

L,mL
|2 = (Ec/V )L+1/2.

Since the p-wave barrier height is directly related to the attractive van der Waals

potential (characterized by C6), the QT model gives an upper limit for the rate

coefficient to be

π

4

�
317 µ3 C3

6

�10

�1/4

kBT. (10.7)

For KRb, β = 1.5(1) · 10−5 cm3/s/Kelvin, which again agrees well with our ex-

perimental measurement (Fig. 10.5).

These simple theories, which both provide reasonable agreement with our

molecule-molecule collisional loss measurements, suggest that chemical reaction

rates are strongly influenced by the long-range interactions. This opens intriguing

control possibilities as the long-range interaction can be controlled by selecting

quantum states and tuning collision energies.

10.3.2 s-wave Collisions

Reaction rates should be dramatically different if molecules are prepared

in a mixture of different hyperfine states as s-wave scattering is now allowed.

We measured the inelastic collision rates for ro-vibronic ground-state molecules

that were prepared in a roughly 50-50 incoherent mixture of the two hyperfine

spin states | − 4, 3/2� and | − 4, 1/2�. The time-dependent number density of

trapped molecules was measured for both spin states. We observed the same loss

rate for both states, consistent with loss due to collisions between distinguishable

molecules in different spin states. The rate coefficient is determined to be 1.9(4) ·

10−10 cm3/s, independent of temperature, as shown in closed squares in Fig. 10.5.

In comparison to our measurements for p-wave collisions between spin-polarized
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molecules, the s-wave collision rate between molecules in different hyperfine states

is 10 - 100 times larger for a similar temperature range.

As in the atom-molecule s-wave collisions, molecule-molecule s-wave inelas-

tic collision rates can be estimated using the MQDT model. Here, the relevant

length scale is determined by the inter-molecular van der Waals potential without

any angular momentum barrier [85]. We assume that when the molecules ap-

proach each other within the van der Waals length, chemical reactions take place

and remove these entrant molecules with a near-unity probability. The universal

loss rate coefficient predicts a β value of 0.8 · 10−10 cm3/s, which is about half

of the experimentally observed value. This difference suggests that short-range

physics may play some role in the loss dynamics. An enhancement in the rate

coefficient (up to the energy-dependent unitarity limit, which is 4 ·10−10 cm3/s for

a gas at 400 nK) is possible if there is a partial reflection of the colliding species

back into the entrance channel. The reflected amplitude interferes with the in-

coming amplitude and can either increase or decrease the rate coefficient from its

“universal” value. Additional theory and experiment are needed to explore this

possibility [116].

Together the results presented here allow us to draw the conclusion that

we have observed barrierless chemical reactions in the short range, with the rates

determined completely by long-range scattering dynamics dictated by quantum

statistics, angular momentum barriers, and threshold laws. In particular, these

studies show that chemical reactions can proceed with high rates in the ultracold

regime, and that, furthermore, it will be possible to experimentally control the

reaction rates because they depend primarily on long-range interactions. And

most importantly, with our understanding of the intrinsic collisional molecular

lifetime, we can now turn on an applied electric field and begin to study electric

dipole-dipole collisions.



Chapter 11

Electric Dipole-Dipole Collisions

In the last chapter, we investigated density- and temperature-dependent

lifetime of our fermionic ro-vibronic ground-state molecules, which is on the order

of a second. Finally, we are ready to turn on an electric field to manipulate

a unique property of polar molecules – their large and tunable electric dipole

moment. After working with alkali atoms and weakly bound Feshbach molecules

for many years, where their magnetic moment is about ∼ 1 µb and their electric

dipole moment is essentially zero, it took some getting used to molecules with

an electric dipole moment and essentially zero magnetic dipole moment. In this

chapter, I will start by introducing technical things we learned while working with

electric dipoles and then discuss some of the exciting first results of electric-field

controlled dipolar collisions.

11.1 Working with Electric Dipoles

The induced dipole moment of our polar molecules is directly related to the

applied external electric field. Figure 11.1 shows the induced dipole moment vs

electric field from the permanent electric dipole moment (0.574 Debye) and the

rotational constant (h·1.1139 GHz) we measured previously (Chapter 8.3). We

typically work with an electric field up to ∼ 5.0 kV/cm (corresponding to a dipole

moment up to ∼ 0.21 Debye.)
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Figure 11.1: Calculated KRb induced dipole moment vs electric field for the
permanent dipole moment of 0.574 Debye and the rotational constant of h·1.1139
GHz that we measured[15]. A larger range of dipole moment vs electric field is
shown in the inset.

11.1.1 E-field Gradients

The electric field at our molecules is provided by a pair of parallel voltage

plates (see Fig. 3.2). However, due to the machining precision of a spacer/holder

in between the plates plus gluing the two plates to the holder, the plates may not

be perfectly parallel. We first suspected this when we saw a shift in the molecular

cloud equilibrium position when we turned on the electric field to increasing values

(see Fig. 11.2). This shift occurred in the weak direction of a single-beam optical

trap (perpendicular to the field direction). We then estimated the electric-field

gradient that could arise from a slight tilt between two plates. First, to a good

approximation within the range of our applied electric field, we consider electric

field mixing of only N = 0 and N = 1 rotational states. The induced dipole
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Figure 11.2: An electric-field gradient pushes the molecular cloud in the weak
direction of the optical trap confinement. Each camera pixel is 5.4 µm in our
system. For this data, the electric field is turned on for 40 ms. For a given
duration, the cloud position shift is proportional to the gradient force which in
turns is proportional to the square of the applied electric field. We fitted the shift
to the quadratic term of the electric field that is 20 µm/(kV/cm)2 and backed out
the amount of electric-field gradient.

moment, �d�, is

�d� ≈ d√
3

�
(ε/ε0)2

3 + (ε/ε0)2
, (11.1)

where d is the permanent electric dipole moment, ε is the applied electric field,

and ε0 = 3.85 kV/cm is the critical electric field (see Chapter 8.3 for definition)

for KRb. The force on the molecules from the electric field is

F = − d

dx
(��d�·�ε) = −�d�· dε

dx
−ε

∂�d�
∂ε

∂ε

∂x
≈ −2· d√

3

ε/ε0�
3 + (ε/ε0)2

· dε

dx
∝ ε2 (11.2)

The shift of the cloud position (Fig. 11.2) was due to the electric-field gradient

(countered by an optical confinement in this weak direction which we neglected

here). From Eq. 11.1, we can calculate the gradient we measured in Fig. 11.2

to be 1.8 V/cm2 per 1 kV/cm applied. The gradient could be explained by the

separation of the E-field plates varying by ∼ 25 µm over 1 cm. This is a very
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small fraction of the 1.35 cm average separation. From the experimental point of

view, this shows that the effect of the molecular electric dipole moment is huge!

11.1.2 Fringing Fields and a Non-symmetric Ground Plane

We overcame the electric-field gradient problem by replacing the single beam

optical dipole trap with a crossed-beam dipole trap. This increased the optical

trap confinement in the weak direction by a factor of 10 in trap frequency and

reduced the effect of the field gradient in this direction. (This was done for all

the data presented in Chapter 9 and 10). However, we encountered yet another

gradient problem in the direction parallel to the electric field (Fig. 11.3) (also the

direction of gravity) where the optical confinement is the strongest. Since any tilt

of the field plates would only cause a gradient in the horizontal plane, we needed

to investigate other possible causes.

Figure 11.3: Molecule leaking out of the optical trap due to a strong electric field
gradient at an applied field 3 kV/cm.

We considered the effect of the electric-field plates being surrounded by

ground planes and also the fringing field from the finite-size of the plates. In our

first attempt to apply an electric field, we had the top plate grounded and applied

a high voltage to the bottom plate. We did this because the top plate was close

to a grounded microwave coil (Fig. 3.2) and we were concerned about dielectric

breakdown. This asymmetry in the applied voltage combined with the existence

of nearby grounded magnetic coils give rise to a vertical E-field gradient. The
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Figure 11.4: Finite-element simulation of the electric-field for our E-field plates
surrounded by nearby grounded planes. (a) We ground the top E-field plate and
apply 1 kV at the bottom plate. The plates are surrounded by a grounded 3-D box
that is 4 times bigger than the space spanned by the plates and their separation.
The field gradient is ∼ -40 V/cm2 at the geometric center. (b) Add an additional
ground plane that is only 0.16 cm away from the top plate. The field gradient is
the same as in (a) but the effect of fringe fields moves closer to the center. (c)
When splitting the voltage difference between the top and the bottom plates, the
field gradient is reduced to 10 V/cm2 and changes sign.
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electric field will be stronger near the bottom plate and weaker near the top plate

because field lines can go to grounded planes other than our grounded E-field

top plate. To estimate the magnitude of the gradient, we performed a finite-

element calculation using a program called ANSYS. To illustrate the importance

of each effect – finite size, fringing field, position of the grounded plane, and the

non-symmetric applied voltage, we calculated the field by adding one effect at a

time (we ignored the glass cell between the plates here). Our simulation was the

following: 1. We first considered grounding the top plate, and applying 1kV at

the bottom plate. In the model, the pair of E-field plates are surrounded by a

grounded 3-D box that is four times the size of the space spanned by the area

and the separation of the plates. At the geometric center between the plates, the

field gradient is about −40 V/cm2 while the E-field ∼ 750 V/cm (Fig. 11.4(a)).

Experimentally we observed a gradient that is about a factor 2 larger than the

simulation based on the crude geometry. 2. Adding a grounded plane to simulate

the effect of the nearby microwave coil, the gradient at the center did not change,

but the fringing fields cause the region of uniform field strength to shrink farther

from the edge of the plates. Therefore, if the cloud is off-centered in the horizontal

plane, the gradient can be larger and pointed in a direction other than the vertical

direction. (Fig. 11.4(b)) 3. When split the applied voltage difference between the

two plates (top plate at -0.5 kV and bottom plate at 0.5 kV), the sign of the

vertical gradient changed and the magnitude is reduced to <10 V/cm2. (Fig.

11.4(c)) This is obviously an improvement which we have experimentally verified

as well. However, to get the lowest possible field gradient, we need to further

experimentally vary the voltage ratio of the two plates due to the non-symmetric

ground planes, which comes from surrounding metal coils in the experiments.
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11.2 Inelastic Dipolar Collisions

With the two electric-field gradient problems solved, we can turn up the

electric field in our experiment without perturbing cloud position. Previously, we

have established that at zero applied electric field (zero effective dipole moment)

our indistinguishable fermionic KRb collide via p-wave followed by a near-unity

probability of chemical reactions in the short range (Chapter 10.3.1). This collision

is universal in the sense that the collision rate is solely determined by the long-

range potential, �2
L(L+1)
2µR2 − C6

R6 , which in our case sets the p-wave barrier height.

By tuning the external electric field, we can adjust the effective dipole moment,

�d�, of the molecules (Fig. 11.1), which introduces an additional −C3
R3 term from

the electric dipole-dipole interaction in our gas. The C3 is given by

C3 = 2 · (−1)mL
�

(2L + 1)(2L� + 1)




L 2 L�

−mL 0 m�
L








L 2 L�

0 0 0




�d�2
4π�0

.

(11.3)

This term shows that dipole-dipole interactions 1. are long-range and anisotropic

among mLs and 2. mix different partial waves of the same parity.

The anisotropy nature of the dipole-dipole interaction directly modifies the

long-range potential according to the mLs (shown in Fig. 11.5 and 11.6). At zero

effective dipole moment, the p-wave barrier for mL = 0 and mL = ±1 channels are

degenerate (dashed line in Fig. 11.5). As the effective dipole moment is turned

on, e.g. 0.1 D (Fig. 11.5), the p-wave barrier is raised for the mL = ±1 “side-

by-side” repulsive collision channels and is lowered for the mL = 0 “head-to-tail”

attractive channel. Figure 11.6 shows the anisotropy of the barrier heights vs

dipole moment. At a large effective dipole moment (> 0.15 D), the mL = ±1

p-wave barrier is again lowered, which is due to mixing with higher partial waves,

e.g. L = 3, 5, 7, ... As seen in the QT model (developed by Quéméner and Bohn
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(shown for p-wave, L = 1). When no electric field is applied, the p-wave barriers
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Figure 11.6: Barrier height vs effective dipole moment, �d�. The solid lines are
calculated using the adiabatic energies considering partial wave mixings up to
L = 7. The mL = ±1 barrier heights rise as the effective dipole moment increases.
However, when d> 0.15 D, the barrier height reduces due to mixings of higher
partial waves. The mL = 0 barrier height reduces as the dipole moment increases.
The dashed lines are the diabatic curves without partial wave mixing.
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in [117]) in Chapter 10.3.1, the inelastic collision rate is directly determined by

the collisional barrier. The consequence of dipolar interaction in our gas, which

is a thermal average of all collisional channels, is that the inelastic collision is

dominated by the lowering of the p-wave barrier due to the attractive mL = 0

channel.

11.2.1 Anisotropy of Losses

Experimentally, we measured the inelastic loss rate of molecules as a func-

tion of the effective dipole moment (Fig. 11.7(a)). At small dipole moments,

we observed a constant inelastic collision rate that is mainly determined by the

attractive van der Waals potential. At large dipole moments, the inelastic loss

rate grows with �d�p where p was measured to be 6.1(0.4) (fitting to an additional

offset, c + A · �d�p, p = 6.7(0.5)). The large power-law dependent came from the

steep lowering of the barrier height due to the attractive dipolar interaction (the

mL = 0 channel, Fig. 11.7(b)). This can be seen in the analytical formulas of the

QT model, which predicts the inelastic rate for the attractive channel (mL = 0) to

grow as �d�6 in the limit of C3
R3 � C6

R6 [117]. For the repulsive channel (mL = ±1)

in the limit of C3
R3 � C6

R6 , but before mixings with higher partial waves become

important (i.e. in the diabatic limit), the inelastic rate decreases as �d�−6 [117].

Our experimental data (Fig. 11.7(a)) shows qualitative agreement with the

QT model (Fig. 11.7(b)). However, the quantitative agreement can be made if we

introduce two fitting parameters, pb and C6, to adjust the QT predicted loss rate.

“pb” is the probability or an overall scaling factor of the loss at the short-range

and C6 determines the zero E-field barrier height, hence the molecular loss rate

at low dipole moment. For the best fit to our data, we found pb= 0.34(12) and

C6 = 31000(16000) a.u.
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Figure 11.7: Inelastic dipolar collisions. (a) experimental observation of inelastic
losses as the function of effective dipole moment. The fit is based on the QT loss
rate model that uses p-wave barrier height from the adiabatic energies with an
overall scaling factor of 0.34 and a van der Waals dispersion coefficient C6 = 31400
a.u. (b) Predicted loss rate from the QT model based on C6 = 16130 a.u. (C6

was calculated by S. Kotochigova) and pb = 1. The QT model is a “classical”
calculation tailored to describe quantum threshold laws. Contributions of mL = 0
and mL = ±1 respectively are shown, where the losses we observe at high dipole
moments are predominately from the attractive mL = 0 channel.
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11.2.2 Anisotropic Heating

Along with the strong inelastic loss of molecules with an increasing dipole

moment, we observed strong corresponding heating for the trapped gas (Fig.

11.9). Here, we consider the heating of the trapped gas due to the so-called

“anti-evaporation” process from inelastic collisions. The main inelastic loss in our

gas is two-body collisions (ṅ = −β · n2), where the losses of molecules occur most

frequently at the densest part of the cloud. Since our gas is in a harmonic trap,

the highest density region coincides with the coldest part of the gas (Fig. 11.8(a)).

Therefore, when molecules in this region are removed, the average temperature of

the remaining gas increases (Fig. 11.8(b)). However, there is a competing cooling

effect due to β ∝ T for p-wave collisions. To understand the overall heating of

the gas, we will consider both the cooling and the heating effects from p-wave

inelastic collisions.

T

(b)(a)

Figure 11.8: Anti-evaporation of a trapped gas due to inelastic collisions. (a)
inelastic collisions occur most frequently at the densest part of the gas which
coincides with the coldest part of the gas. (b) when molecules in the coldest part
are lost, the average temperature of the remaining gas increases.
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Figure 11.10: Individual temperatures, along (Tz) and perpendicular (Tx) to the
applied E-field direction. We observed heating in Tx and cooling in Tz (for small
dipole moment). The anisotropy of heating can be explained by the dominate
dipolar collisions in our gas being the attractive channel.
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Here I will only give a brief sketch of the analysis as it is still ongoing during

the time when this thesis is written. The temperature evolution of the gas follows

directly from the inelastic collision events. (Temperature changes due to elastic

dipolar collisions are ignored here.) For each collisional event, two molecules are

removed from the trap with an energy change including their kinetic energy and

potential energy. The energy change is then re-distributed among the remaining

molecules in the trap. Furthermore, the rate of the temperature change is the

product of the temperature change per collision and the inelastic collision rate,

which depends on the collisional energy (temperature). Our model based on this

analysis shows that the initial heating rate of the gas is directly related to the

inelastic loss rate β by an overall factor of 1/12. Plotting β

T0
/12 where β

T0
was

fitted from the loss measurement in Fig. 11.7(a), we see that the overall heating

is explained well by the model sketched above (Fig. 11.9).

Beside an overall heating due to the inelastic collisions, we also observed an

anisotropy in the heating along (Tz) and perpendicular (Tx) to the applied E-field

direction (along z). In Fig. 11.10, we measured the molecular gas temperature Tz

and Tx as a function of the effective dipole moment after holding the gas in the

trap for 100 ms while the E-field is on. This measurement shows that Tz is mostly

cooled during the 100 ms period, while Tx is heated. At large effective dipole

moment, both directions are heated. This effect makes sense because we expect

cooling in Tz and heating in Tx for the attractive dipolar collisions, which are

the dominant collisions in our 3D gas. However, at high effective dipole moment,

we observed a rise in the temperatures for both directions. This could be due to

strong elastic dipolar collisions that transfer energy from one direction to another.
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11.3 Elastic Dipolar Collisions

The presence of an E-field not only turns on strong inelastic collisions, but

also turns on long-range elastic dipolar collisions. The elastic collisions due to the

long-range dipole-dipole interaction is independent of the short-range elastic cross

section, which for fermionic molecules is expected to be small and suppressed (as

is the case of fermionic K atoms [118]). However, the long-range elastic collision

cross section could still be large. In Chapter 1.3.1 (Fig. 1.1), I have summarized

the result of universal elastic dipolar collisions from Bohn et al. [36] (a similar

result was also obtained in [119]), where the elastic collisional cross section in the

threshold regime (applicable to our experiments) is directly proportional to �d�4.

This result was derived using the Born approximation, where the elastic collisional

cross section written in a generic T -matrix form is

σel =
π l2

D

k2

�

L,L�,mL

|TmL
L,L�|2. (11.4)

Here lD is the dipole length as defined in Chapter 1.3 and k is the wavenumber of

the relative motion of the dipoles. An additional factor of 2 needs to be multiplied

for collisions of indistinguishable particles. The T -matrix labelled by angular

momentum channels is an integral of both the angular part (CmL
L,L�) and the radial

part (ΓL,L�) of the wavefunction.

TmL
L,L� = −k · CmL

L,L� · ΓL,L� , (11.5)

where

CmL
L,L� = (−1)mL

�
(2L + 1)(2L� + 1)




L 2 L�

−mL 0 m�
L








L 2 L�

0 0 0



 (11.6)

and

ΓL,L� =






4
L(L+1) , if L = L�

4
3(L+1)(L+2) , if L = L� + 2.

(11.7)
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From the explicit expression of CmL
L,L� , it is clear that dipolar collisions only mix

states of the same parity. Therefore, Bohn et al. have derived the elastic collisional

cross section for the even and the odd partial waves separately, which depend on

the quantum statistics of the collisions.

In our case, the indistinguishable fermionic molecules collide via odd partial

waves, and σel = 6.7 · 10−8 �d�4
Debye4 cm2. This collisional cross section is quite large.

For a comparison, Rb elastic collision cross section with a background scattering

length ∼ 100 a0 is 8πa2
0 = 7 · 10−12 cm2, which is equivalent to the elastic dipolar

cross section of fermionic polar molecules with a dipole moment of 0.1 Debye.

Since the total cross section is a sum of many angular momentum channels, we

can directly compute the contribution of each partial-wave channel using the Born

approximation. The contribution of L = 1, mL = 0 is ∼ 60 %, L = 1, mL = ±1

is ∼ 15 % each, and higher partial waves is only ∼ 10% of the total cross section.

Using the theoretical predicted elastic dipolar collision cross section and

the measured inelastic collision rates, we can calculate the ratio of the elastic to

inelastic dipolar collision rate (βelastic = �σel · v�/βinelastic) as a function of the

effective dipole moment. From Fig. 11.11, we can see that the highest ratio is

slightly above 1 around 0.13 D, which suggests that further evaporative cooling

using dipolar collisions is difficult without suppressing the inelastic collisions.

11.4 Cross-dimensional Rethermalization

We attempt to measure the elastic dipolar collision cross section in the ul-

tracold gas of ground-state KRb by using the method of cross-dimensional rether-

malization [120]. The molecules are confined in a pancake-shaped optical dipole

trap with an aspect ratio of ∼7. Typical trap frequencies for the optical dipole

trap used are fx ≈ fy ≈ 40 Hz and fz ≈ 280 Hz. For these measurements, we

heat the gas in one direction, Tz (or Tx), by modulating the trap at twice the
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Figure 11.11: The ratio of the elastic dipolar collision rate βelastic (calculated based
on [36]) to the inelastic dipolar collision rate βinelastic (measured) vs the effective
dipole moment for KRb. The elastic collision rate scales as T 1/2 and the inelastic
collision rate scales as T . The ratio is the highest (> 1) around 0.13 D.

frequency 2fz (or 2fx) to excite a breathing mode and watch the gas come to a

thermal equilibrium due to energy transfer from one direction to another. The

rethermalization time scale (τreth) can be related to the elastic collisional cross

section by an expression τreth = (n · σel · v)/α, where n is the density, v is the

mean velocity of the gas, and α accounts for the geometric factor of the number

of collisions required for rethermalization. However, in this measurement inelastic

collisions that cause anisotropic heating could mimic the rethermalization effect

of elastic collisions. This is because both types of collisions affect the thermal

anisotropy of the gas.

Figure 11.12 shows data from our cross-dimensional rethermalization mea-

surements. For the data in the first column, we heat the gas in the z direction. We

observe the temperatures in two directions (Tx, Tz) approach each other rapidly
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as a function of the dipole moment. However, the temperatures eventually cross

each other. For the data in the second column, we heat the gas in the x and y

directions simultaneously. However, the temperature in the x direction and the

z direction never appear to “rethermalize.” This can be explained mostly by the

inelastic anisotropic heating model as briefly sketched out in section 11.2.2, which

reenforces our observation of the anisotropic nature of inelastic collisions. Fur-

thermore, our preliminary attempt to fit the data based on the model shows good

agreement (Fig. 11.12) if we include the elastic collision term (�d�4 as described in

the last section 11.3) to describe the temperature behavior of the rethermalization

data.

Although the data analysis for the dipolar collisions is still on-going, I

have presented here our measurements that show both the long-range and the

anisotropic nature of dipole-dipole interactions.
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Figure 11.12: Sample data for cross-dimensional rethermalization. For initial
Tz > Tx, we observed Tx and Tz approach each other with a decreasing time
scale as a function of dipole moment. However, the temperatures did not come
to a thermal equilibrium but rather crossed each other. For initial Tx > Tz, the
two temperatures never rethermalize and even diverge. This is mainly due to
anisotropic heating for attractive dipolar collisions in our 3D gas.



Chapter 12

Conclusions and Future Directions

12.1 Conclusion

In this thesis, I have presented the story of the experimental realization of

a high phase-space-density gas of 40K87Rb polar molecules and some initial inves-

tigations of ultracold molecular chemical reactions and dipolar collisions. These

ultracold polar molecules at a few hundreds of nanoKelvins and at 1.4 times their

Fermi temperature are created with two coherent transfer steps from an ultracold

gas mixture of 40K and 87Rb. The first step is to transfer atoms into extremely

weakly bound molecules (molecular size of ∼ 250 a0) near a Fano-Feshbach res-

onance. The second step is to transfer these weakly bound molecules into their

ro-vibronic ground state (molecular size of ∼ 8 a0) with a coherent two-photon

Raman technique. The first step was demonstrated in J. Zirbel’s thesis to be

about 25% efficient [24], while the second step demonstrated in this thesis is 90%

efficient. We verified that the ro-vibronic ground-state molecules are polar by

measuring their permanent electric dipole moment spectroscopically.

Once molecules were prepared in the ro-vibronic ground state, we imple-

mented a scheme to manipulate their molecular internal hyperfine state and ex-

plored various scenarios of ultracold collisions. We observed ultracold chemical

reactions between KRb and K. Once all the atoms were removed, we observed

fermionic 40K87Rb lifetime on the order of a second. This is limited by molecule-
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molecule p-wave collisions where molecules tunnel through a 24 µK p-wave an-

gular momentum barrier followed by a near-unity probability of chemical reac-

tions. Furthermore, we began to explore the polar nature of the molecules in

collisions through their large and tunable electric dipole moment. For large effec-

tive dipole moments, we observed enhanced inelastic collision rates that scale as

d6 and anisotropic heating of the gas.

12.2 Future Work

An immediate goal in the future is to evaporate our near quantum degen-

erate gas further and begin to realize some of the many exciting proposals for

molecular quantum gases. To evaporate our gas of spin-polarized fermionic polar

molecules, one can turn on strong elastic dipolar collisions by applying an electric

field. However, our work so far suggests that strong inelastic collisions also hap-

pen at the same time as the elastic collisions, and these cause significant loss and

heating of the gas. Therefore, to reach quantum degeneracy, inelastic collisions

need to be suppressed. One way is to suppress the dominant inelastic channel

(the attractive dipole-dipole interactions) by going to reduced dimensions [110].

Figure 12.1 shows the ratio of the elastic to inelastic dipolar collision rate when

the attractive collision channel is completely suppressed. This ratio is favorable

for further evaporative cooling of KRb when the effective dipole moment is in-

creased. Given the advances we have already made and all that we have learned,

I am optimistic that the future of a quantum gas of polar molecules is bright and

exciting!
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Figure 12.1: The ratio of the elastic dipolar collision rate (calculated based on [36])
to the inelastic dipolar collision rate (measured) vs the effective dipole moment
for KRb at 200 nK. The dashed line shows the ratio when the mL = 0 collisional
channel is completely suppressed. In this case, the ratio increases dramatically
with increasing dipole moment, which makes dipolar collisions favorable for further
evaporative cooling of our KRb gas.
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[34] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T.
Pfau, H. Saito, Y. Kawaguchi, and M. Ueda, d-Wave Collapse and Explosion
of a Dipolar Bose-Einstein Condensate, Phys. Rev. Lett. 101, 080401 (2008).

[35] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics
of dipolar bosonic quantum gases, arXiv:0905.0386 (2009).

[36] J. L. Bohn, M. Cavagnero, and C. Ticknor, Quasi-universal dipolar scatter-
ing in cold and ultracold gases, New Journal of Physics 11, 055039 (2009).

[37] A. V. Gorshkov, P. Rabl, G. Pupillo, A. Micheli, P. Zoller, M. D. Lukin, and
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fine energy levels of alkali-metal dimers: Ground-state polar molecules in
electric and magnetic fields, Phys. Rev. A 78, 033434 (2008).
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Appendix A

Sample Mathematica Code

Throughout the thesis, I have presented a few calculations, for examples,

the KRb Stark shifts and the KRb-KRb long-range adiabatic potentials. Those

calculations were based on a very simple code in Mathematica that were setup with

the help from D. Meiser and T. Rosenband. In addition to the calculations shown

in this thesis, the same code have been adapted to calculate different Hamiltonians

that use the basis set of angular momentum states |J,mJ�, e.g. Zeeman energies

of ground-state and excited-state K and Rb, etc. I found the code very useful

and would like to share it here. I will take the KRb Stark shift calculation as an

example. The parts labeled “list of J and mJ values to be evaluated” and “define

H in reduced units” are the main parts that can be adapted for any Hamiltonian

of interest.
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In[1]:= Clear@B, mu, d, r, Efield, E0, EfD;
Off@ClebschGordan::"phy" D
Off@ ClebschGordan::"tri"D
Needs@"NumericalCalculus`"D
Needs@"NonlinearRegression "̀D
Needs@"LinearRegression`"D
Needs@"ErrorBarPlots`"D

constants and units
In[8]:= hbar = 1.054571628 10-34 H*J s*L; amu = 1.660538782 10-27H*kg*L;

c = 299792458H*m s-1*L; kb = 1.3806504 10-23H*J K-1*L; e = 1.602176462 10-19

H*C*L; a0 = 0.5291772083 10-10H*m*L; mKRb =
H87µ40L
H87 + 40L

 amu;

In[9]:= SetOptions@Plot, BaseStyle -> 8FontFamily -> "Arial", FontSize Ø 18<,
PlotStyle Ø 8Thick<, TicksStyle Ø Directive@Black, 10D, Frame Ø TrueD;

SetOptions@ListPlot, BaseStyle -> 8FontFamily -> "Times", FontSize Ø 18<,
PlotStyle Ø 8Thick<, TicksStyle Ø Directive@Black, 10D, Frame Ø TrueD;

list of J and mJ values to be evaluated
In[11]:= mjlist@j_D := Table@8j, mj<, 8mj, 0, j<D;

jlist@Jmax_D := Table@j, 8j, Jmax, 0, -1<D;
JmJ@Jmax_D := Flatten@mjlist êü jlist@JmaxD, 1D

In[14]:= JmJ@5D

Out[14]= 885, 0<, 85, 1<, 85, 2<, 85, 3<, 85, 4<, 85, 5<, 84, 0<, 84, 1<, 84, 2<, 84, 3<,84, 4<, 83, 0<, 83, 1<, 83, 2<, 83, 3<, 82, 0<, 82, 1<, 82, 2<, 81, 0<, 81, 1<, 80, 0<<
In[15]:= Jmax = 5;H*define how many Js I want to take into consideration*L

define H in reduced units
In[16]:= H*write hamiltonian in the energy unit of B,

write Efield is in the unit of critical field=Bêd*L

In[17]:= hamiltonian2@8jprime_, mjprime_<, 8j_, mj_<D :=
j*Hj + 1L*KroneckerDelta@j, jprimeD*KroneckerDelta@mj, mjprimeD -

Ef* H2 j + 1L H2 jprime + 1L  H-1Lmj ThreeJSymbol@8j, -mj<, 81, 0<, 8jprime, mjprime<D*

ThreeJSymbol@8j, 0<, 81, 0<, 8jprime, 0<D;
HH2 = Outer@hamiltonian2@Ò1, Ò2D &, JmJ@JmaxD, JmJ@JmaxD, 1D;
ev = Eigenvalues@HH2D

In[20]:= H* figure out ordering of eigenvalues at non-zero Efield *L
evOrder = Ordering@ev ê. Ef Ø 1 êê ND
evo = evPevOrderT;

Out[20]= 816, 11, 17, 7, 12, 18, 4, 8, 13, 19, 2, 5, 9, 14, 20, 1, 3, 6, 10, 15, 21<

Printed by Mathematica for Students
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v=0 of singlet ground

In[22]:= singlet = :d Ø 0.22591382365886692e a0, B Ø
6.6836

6
 109 hbar 2 p>;

H*dipole moment and rotational constant*L

In[23]:= E0 =
B

d
ê. singlet; H*define critical electric field for singlet vibrational ground state*L

In[24]:= StarkPlot = PlotB
B

109 hbar 2 p
evo ê. 9Ef Ø IEff 105M ë E0= ê. singlet,

8Eff, 0, 30<, PlotLabel Ø "Stark effect of v=0",

FrameLabel Ø 8"Electric Field in HkVêcmL", "Energy HGHzL"<F

Out[24]=
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Printed by Mathematica for Students
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Dipole Moment (Debye) vs Electric Field (kV/cm)

In[26]:= DvEPlot = PlotB-D@Hevo@@1DDL 0.574, EfD ê. Ef Ø 105 
Eff

E0
ê. singlet,

8Eff, 0, 5<, PlotLabel Ø "induced dipole moment of v=0", FrameLabel Ø

8"Electric FieldHkVêcmL", "Dipole Moment HDebyeL"<, PlotRange Ø 880, 5<, 80, 0.22<<F

Out[26]=
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Printed by Mathematica for Students



Appendix B

Tapered Amplifier Design

One of my very first projects as a graduate student was to design a tapered

amplifier (TA) mount for Eagleyard TA chips that come in a C-mount. With the

help from Josh Zirbel, Scott Papp, and Carl Wieman, our design has now become

the standard JILA design. The major difference between previous designs and

our design is the use of clamping to make the electric connections to the tapered

amplifier, rather than soldering. The design of the overall geometry and the

flexure mount that is used for fine adjustment of the collimation is similar to

Brian DeMarco’s design [121].

Figure B.1: Overview of the TA mechanical design. The red arrow shows the
direction of the current from an electric wire through the screw hole to the clamp,
then through the lead of the TA chip to the body of the chip, and finally to the
wire that is connected on the side of the TA holder.
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layers of Kapton 
tape for insulation

should be bigger to avoid 
possible clipping of the light

Figure B.2: Detailed dimensions (in inches unless otherwise indicated) of the C-
mount pocket. To isolate the lead (either current sourcing or sinking) of the TA
chip from the holder, we place 1-2 layers of Kapton on the holder where the lead
sits. In addition, a thin piece of indium is sandwiched between the C-mount
pocket and the C-mount of the TA chip for a good thermal contact that allows
heat to flow away from the chip to the whole copper holder piece.
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Figure B.3: Detailed dimensions of the TA holder in inches. The “arm”-like
structure is to prevent dust falling onto the TA chip and the lens holder touching
the chip. This part can be removed.
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Figure B.4: Detailed dimensions of the clamp. A current source is attached to the
clamp through a metal lug that is screwed onto the center screw hole. The clamp
itself is screwed onto the TA holder using nylon screws.
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Figure B.5: Detailed dimensions of the lens holder that is used to collimate laser
beams going into and out of the TA chip.
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Figure B.6: Lens adapter for Thorlabs Geltech aspheric lens.



178

Figure B.7: Detailed dimensions of the flexure mount that is used for fine tuning
of the collimation lens position relatively to the TA chip.


