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Abstract

Recent theoretical and experimental advances have led to better understanding and

control of simple molecules, bringing them to the forefront of quantum science. Diatomic

polar molecules, with their vibrational and rotational degrees of freedom and electric

dipole moment, are excellent candidates for a scalable qubit, probes of beyond-Standard

Model physics, and quantum simulation of topological and chiral many-body systems.

These applications call for high-phase space density (PSD) of molecules in a single quan-

tum state. To date, the highest molecular PSD is achieved by coherently associating de-

generate quantum gases of atoms into molecules. However, this requires fine-tuning of

experimental parameters to maximize spatial overlap of the atomic density distributions

while minimizing three-body recombination of the atoms.

In this thesis, we propose a bottom-up solution to gain single particle control of ultra-

cold molecules for the first time. We use optical tweezers to deterministically assemble a

single NaCs molecule in a single quantum state from a pair of Na and Cs atoms. Added

benefits of using optical tweezers include: tight confinement of isolated atoms enabling

cooling of Na and Cs to their quantum ground state of motion in less than 100 ms, and
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dynamic reconfigurability of optical tweezer arrays which will allow scaling up to defect-

free arrays of single molecules. In the process, we realize a conceptually simple platform

for studying atomic collisions and molecular spectra which derives its strength from the

ability to gather “before” and “after” images of single atoms.
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Chapter 1

Introduction

1.1 Why Ultracold Polar Molecules?

For over two decades, ultracold neutral atoms have served as workhorses in experimental

quantum science. Their indistinguishability, available internal states featuring long coher-

ence times or large dipole moments, low configuration entropy, and ability to be manipu-

lated with electromagnetic fields make them ideally suited for applications ranging across

quantum many-body physics and quantum simulation [1–8], quantum networks [9–11],

quantum information processing [12–16], precision measurements [17, 18], and the study

of cold collisions [19–22].

Spurred by these successes, there has been a flurry of activity to bring neutral molecules

under the same level of control. This is motivated by the observation that even the di-

atomics, the simplest of molecules, are already far more complicated than atoms: it only
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takes one molecular bond to support rotational and vibrational degrees of freedom. This

rich internal structure will offer a wealth of opportunities, as discussed below. In addi-

tion, the electric dipole moment in polar molecules endows even the long-lived vibrational

states in the electronic ground manifold (with the shortest lifetimes around a minute at

300 K [23]) with strong, long-range, anisotropic, and tunable [24] interactions. Finally,

like neutral atoms, molecules can be well-isolated from the environment, allowing for long

decoherence times, and are indistinguishable from other molecules of the same species,

making them a scalable quantum resource. For example:

• It has been proposed to use a pair of nuclear spin states of NaCs as storage qubits,
while a third rotationally excited state with rotation-hyperfine coupling enables
switchable electric dipolar exchange interactions between two molecules to generate
an iSWAP gate [25]. Thus, in addition to being scalable, molecules fulfill two com-
peting requirements for a qubit, long coherence times and strong interactions, in
part thanks to its rotational structure, which is completely absent in atoms.

• Neutral molecules with large internal electric fields also provide opportunities to
probe beyond-Standard Model physics on table top experiments [26–29]. The search
for an electron EDM relies on measuring energy shifts arising from the interaction
of an electron with a large electric field. A bound electron in ThO experiences an
effective field of ∼ 100 GV/cm, while the molecule itself only requires 10 V/cm to
fully polarize in the lab frame [30]. Note that it is the enormous polarizability of
ThO (and available internal states for canceling systematic errors) and not the mag-
nitude of the effective field per se, which makes it an attractive candidate for this
measurement. The polarizability arises from the projection of electronic angular
momentum onto the internuclear axis, another feature which is completely absent
in atoms.

• Polar molecules with high phase space density are ideal candidates for realizing
exotic quantum many-body phases due to their long-lived rotational states which

2



can act as pseudo-spins, and long-range, tunable, anisotropic dipole-dipole interac-
tions [31–39].

Leveraging the existing properties of molecules can allow us to make great strides in

quantum science. To that end, we desire a general way to realize low-entropy samples of

ultracold molecules in a known quantum state. Unfortunately, the rich internal structure

of molecules also comes at a steep price.

1.2 Direct Cooling of Polar Molecules

The usual paradigm of laser cooling requires the molecule to scatter 104 photons to trans-

fer enough momentum to slow the fast-moving molecule. However, the lack of vibrational

selection rules means that molecules generally do not possess cycling transitions on which

they can scatter many photons. Direct laser cooling of molecules, while having undergone

rapid progress in recent years [40–44], relies on a special class of molecules having spon-

taneous radiative decay channels which preserve the vibrational state with high probabil-

ity. Other direct cooling mechanisms (opto-electrical Sisyphus cooling [45, 46], buffer gas

cooling [47]), are many orders of magnitude lower in phase space density from quantum

degeneracy.
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1.3 Associating Polar Molecules from Atoms

Another celebrated route to obtaining ultracold polar molecules is to start with two species

of atoms that can be easily cooled to quantum degeneracy, and coherently associate them

into molecules [48–53]. The advantage of this approach is that laser cooling is performed

only on the constituent atoms, which avoids the problem of vibrational branching dur-

ing spontaneous emission. Recently, this method led to the first degenerate Fermi gas of

polar molecules [54].

This technique hinges on creating two quantum degenerate atomic gases with a near

one-to-one spatial overlap between atoms of the two species. However, even in the ultra-

cold regime, this overlap is contingent on delicate preparation of simultaneous many-body

states for both species, requiring fine-tuning of experimental parameters [55, 56]. Three-

body re-combination of the atoms [57] or exothermic secondary chemical reactions and

long-lived “sticky complexes” [58, 59] of the formed molecules can all lead to loss of the

desired molecule product and increase in entropy.

1.4 Ultracold Molecular Assembler

All of these problems arise from the lack of control over individual atoms and molecules,

which can be achieved with optical tweezers [44, 60]. In our experiment, we propose a

similar route to ultracold molecules, but using optical tweezers to deliberately merge pairs

4



1.

2.

3.

4.

5.

Weakly-
Bound
Molecules

Merge

Cool

Trap

Ground
State
Molecules

Figure 1.1: Step-by-step procedure for the proposed “ultracold molecular assembler.”
1. Trap single atoms in an array of optical tweezer traps. 2. Cool atoms into mo-
tional ground state. 3. Merge a pair of tweezers into one. 4. Convert atom pairs
into weakly-bound molecules. 5. Perform coherent internal state transfer to bring
weakly-bound molecules to the rovibronic ground state.
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of atoms together (Figure 1.1), rather than relying on stochastic encounters in a bulk

atomic vapor.

We use diatomic molecules made from sodium (Na) and cesium (Cs) atoms due to their

large molecular fixed-frame dipole moments (4.6 Debye) [61, 62] and extensive available

spectroscopy [63–65], although we envision this technique being applied to many other

molecules as new species of atoms become amenable to laser cooling.

1. Trap. First, we prepare laser-cooled Na and Cs atoms in overlapped magneto-
optical traps (MOTs) in a glass cell. The MOT serves as a cold atom reservoir for
loading single atoms into tightly focused optical tweezer traps [60]. When a suffi-
ciently confined atom is illuminated with near-resonant light, a collisional block-
ade induces parity projection which limits the atom number to either zero or one.
Loading a single atom therefore succeeds approximately 50% of the time due to its
stochastic nature [66]. Independent control of Na and Cs atoms is achieved by us-
ing tweezers at different wavelengths, owing to the different wavelength-dependent
polarizabilities of the two species. Fluorescence imaging of the single atom can de-
termine whether or not the tweezer is occupied.

2. Cool. Next, we cool the atoms into their motional ground state by applying 3D
Raman sideband cooling (RSC), a technique first demonstrated with single ions [67]
and more recently with single neutral atoms [68–70]. RSC makes the most efficient
use of each spontaneously emitted photon: ideally, spontaneous emission from op-
tical pumping will only occur after the removal of a quantum of motional energy.
Due to the tight confinement of the tweezers, RSC can reach the quantum ground
state of motion in 100 ms, compared to a minute for evaporation in typical bulk gas
experiments.

3. Merge. Once Na and Cs atoms are in their 3D motional ground state, the two
tweezers are adiabatically overlapped so that both Cs and Na are trapped in the
same tweezer. This procedure maximizes their wavefunction overlap and puts them
in a single relative motional quantum state which can then be coherently trans-
ferred to a single molecular state.
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4. Weakly-bound molecules. At this point, the two atoms will still have an aver-
age separation more than a hundred times the bond length of the NaCs molecule in
the absolute rotational, vibrational, and electronic (rovibronic) ground state. Fur-
thermore, the rovibronic ground state has a binding energy of more than 100 THz.
To overcome this enormous energy difference and small wavefunction overlap, we
will use an intermediate molecular transfer step. The co-trapped Na and Cs atom
pair will first be associated into the most weakly bound molecular state (vibrational
level v′′ = 24 in a3Σ+) by a detuned, coherent, two-photon Raman pulse.

5. Ground State molecules. Finally, the weakly-bound molecule will be transferred
into the rovibronic ground state by the efficient and well-known STImulated Ra-
man Adiabatic Passage (STIRAP) [71] process.

Below we highlight several strengths of this proposed technique.

• Trapping single atoms in separate tweezers decouples cooling from density, allowing
rapid (∼100 ms) all-optical cooling to the 3D quantum ground state of motion [69].

• Real-time rearrangement based on feeding back on single atom images [72–74] and
enhanced loading [75, 76] could ensure that all merged tweezers contain exactly
one Na atom and one Cs atom. This suppresses three-body loss and other unde-
sirable reaction outcomes and removes configurational entropy without relying on
fine-tuning of scattering lengths.

• The formed NaCs molecules are isolated from each other, which suppresses sec-
ondary reactions.

• The all-optical atom-molecule transfer, first shown in Ref. [77], can be applied even
to species with no suitable Feshbach resonances. This avoids the need for precise
and dynamic control of large (∼ 104 G) magnetic fields.
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1.5 A New Platform For Molecular Spectroscopy

Establishing pathways for coherent manipulation of the unbound (“free”) atom pair to

a bound molecule requires determining the frequency of so-called “free-to-bound” transi-

tions. Throughout this work, we will use the ability to detect two-body loss of a single Na

and single Cs atom in a tweezer to facilitate this task. More broadly, understanding the

structure of even the simplest molecules relies on measured spectral lines to benchmark

theoretical predictions, making molecular spectroscopy in tweezers a technique with wide

implications beyond assembling single molecules.

Typically, light at a resonant frequency drives the free-to-bound transition, resulting in

a reduction of atom number [80]. In bulk atomic vapors, however, such “trap loss” mea-

surements conflate molecule formation with a number of other possible atom-loss mecha-

nisms: collisions with background gas molecules (“one-body” loss), three-body collisions,

formation of molecules other than the desired one, and technical effects such as MOT in-

stability.

Extending trap loss spectroscopy to atoms in tweezers (Chapters 7-9) circumvents this

difficulty. The ability to prepare precisely one Na and one Cs atom in a tweezer ensures

that only formation of the sought-after NaCs molecule contributes to the two-body loss

signal (as discussed in Chapter 7, false positives, arising only from one-body loss, con-

tribute at the 1% level). Furthermore, the binary nature of the two-body loss outcome
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(detecting either both or zero atoms) makes it robust to fluctuations of the MOT number.

1.6 Contents of This Thesis

In this thesis, we describe progress toward the ultracold molecular assembler, and results

from collisions and spectroscopy of a pair of Na and Cs atoms.

Chapter 2 provides technical details about the experimental apparatus.

Chapter 3 discusses how to characterize and obtain diffraction limited performance

from a super achromatic (λ = 589 nm to 1020 nm) microscope objective for imaging and

trapping single atoms.

Chapter 4 describes in detail the mechanisms at play in loading of single atoms into

optical tweezers, particularly Na due to its unfavorable excited state polarizability. The

technique for overcoming this hurdle is widely applicable to any species of atom or molecule

that can be laser-cooled.

Chapter 5 discusses Raman sideband cooling (RSC) of Cs to its 3D motional ground

state, including the dominant heating mechanisms and how our cooling sequence over-

comes them.

Chapter 6 describes the merging of motional ground state Na and Cs atoms into a sin-

gle optical tweezer with minimal heating. We identify the primary heating mechanisms

and study a range of possible trajectories to characterize the robustness against heating.

Chapter 7 describes the first experiments with a single co-trapped Na and Cs atom.
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We extract a Na+Cs inelastic loss-rate constant by observing collisions between exactly

two atoms. We also observe previously unseen near-threshold photoassociation resonances

and use them to extract C6 coefficients of the NaCs molecule. Some background on di-

atomic molecules is also presented.

Chapter 8 describes the first experiments with two atoms cooled to their motional

ground state, and therefore in a well-defined total quantum state. We perform two-photon

spectroscopy to determine the location of the most weakly bound molecular state (vibra-

tional level v′′ = 24 in a3Σ+), our first target state for coherent transfer from atoms to

molecules.

Chapter 9 describes the first attempt at a fully coherent, optical transfer from a pair

of unbound Na+Cs atoms to a NaCs molecule in a single quantum state which is intrinsi-

cally long-lived. We measure a transfer efficiency corresponding roughly to the fraction of

Na+Cs atoms initially in the joint motional ground state. We find that the molecules pre-

pared in this way subsequently scatter photons from the very same light used for molec-

ular transfer and end up in random states. We conclude by suggesting a possible way

forward.
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Chapter 2

Apparatus

2.1 Introduction

The recent proliferation of single atom tweezer experiments [20, 21, 69, 70, 72–74, 81–

84] attests to the versatility and performance achievable in a relatively simple, compact

tweezer setup. In our experiment, the short cycle time (300 ms), enabled by the rapid,

all-optical cooling of isolated and tightly-confined single atoms to their quantum ground

state of motion, relaxes the vacuum requirements and obviates the need for transport.

Another enabling (and unique) feature of our experiment is the ability to trap and manip-

ulate single atoms of two species simultaneously, here Na and Cs. This relies on the use

of tweezers at two disparate wavelengths, specifically 976 nm and 700 nm, and the ability

to collect fluorescence from single atoms at two disparate wavelengths, 589 nm for Na and

852 nm for Cs.
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To achieve these two goals, our apparatus is designed to maximize optical access and

the available numerical aperture (NA) for imaging single atoms and generating tight

tweezer traps that enable fast cooling. In this Chapter, we will describe the chamber, in-

cluding its construction; electromagnetic field coils; trapping and imaging optics; camera;

and laser system.

2.2 Chamber

A CAD overview of the chamber is shown in Figure 2.1.

Glass cell. The experiments take place in an epoxy-bonded quartz rectangular cell 80×

20 × 10 mm (inner dimensions) with 4 mm thick walls from Japan Cell (Figure 2.2A)

that are AR coated on both sides. The AR coating yields a reflectance of less than 4%

over the range 550-1100 nm for angles of incidence of 0-45◦. The cell is bonded to a glass

cylinder on one end with a glass-to metal transition and a standard 2.75” conflat flange.

This is attached to one face of a Kimball Physics Spherical Cube (MCF275-SphCube-C6).

Viewport and 45◦ mirror. One face of the cube is a viewport (MCF275-MtgFlg-C1VP)

for optical access. The opposite face is a blank. We tapped the blank to affix a custom-

machined MACOR 45◦ mirror mount (Figure 2.2B) for redirecting incoming beams down

the cell axis. Thus, beams entering the viewport exit the end of the glass cell, and vice

versa (Figure 2.1). For the 45◦ mirror, we use a Thorlabs PF10-03-P01P 1” backside pol-

ished protected silver mirror to preserve incoming polarization as much as possible.
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Figure 2.1: Chamber overview. L: Isometric view; R: Top view. A. Glass
cell; B. Objective; C. 5-axis mount; D. 3D coil mount; E. Alkali dispensers; F.
Spherical cube; G. Getter/ion pump; H. Electrical feedthrough; I. Valve for rough-
ing pump (closed during normal operation); J. Viewport. Not shown is a 45◦ mirror
mounted inside the chamber, for redirecting laser beams along the optical path
labeled “K” and indicated by double-headed arrows.
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A

B C D

Figure 2.2: Photos during assembly of the chamber. A) Closeup of glass
cell. The grounding ring for the dispensers is visible through the cylindrical glass
tube. B) Custom MACOR mount with silvered mirror. A blank 2.75” con-
flat flange is tapped and the MACOR mount is directly bolted on. C) Closeup
of vacuum side leads from electrical feedthrough. The white Alumina ring
provides additional mechanical rigidity. D) Assembled MACOR mount and
feedthrough, as seen through the viewport.
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Alkali Dispensers. The flange mounted diametrically opposite to the glass cell is a

custom electrical feedthrough from MPF with 8 pins, 7” long on the vacuum side and

arranged in a circle (Figure 2.2C). These support and electrically contact the alkali dis-

pensers (SAES linear alkali metal dispenser). Additional rigidity is provided by a cus-

tom Alumina ring. We spot-weld one end of each dispenser to a feedthrough pin, and

the other end to a common metal ring ∼10 cm from the MOT region, visible through the

glass tube in Figure 2.2A. One of the remaining feedthrough pins is connected directly to

the ring with no dispenser to provide a common electrical return path for all dispensers.

The feedthrough wires are pre-bent so as to avoid the silvered mirror (Figure 2.2D). This

configuration prevents the dispensers from blocking optical access. The pinout diagram,

seen from outside the chamber, is shown in Figure 2.3.

We maintain a constant current of 2 A and 4 A through two of the dispensers at a time

to maintain sufficient Cs and Na vapor pressures throughout the experiments presented.

We note that Cs vapor pressure is sufficient even without activating Cs dispensers. On

the other hand, activating the Na dispensers is critical for achieving sufficient Na vapor

pressure. Although there were nominally different Na and Cs dispensers to begin with,

heating any one of the dispensers gives off both Na and Cs vapor, manifested as an in-

creased MOT loading rate for both species. This is possibly because the dispensers coat

each other over time.

Pumping. The top of the spherical cube is connected to a conical reducer flange fol-

lowed by a Nex Torr D100-5 getter/ion pump. On the bottom is a gate valve (VAT 54132-
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Figure 2.3: Dispenser pinout diagram as seen from outside the chamber.
Na (Cs): pin leads to a Na (Cs) dispenser. N.C.: no connection. Return: electrical
return path for all dispensers. The dispensers in use as of 7/25/2017 are labeled
with their operating current. We note that Cs vapor pressure is sufficiently high
even when no Cs dispensers are active. Also, activating any dispenser appears to
give both Na and Cs vapor, possibly due to cross contamination (see text).

GE02) which can be closed (for normal day-to-day operation) or opened (for connecting

a roughing pump). With the gate valve closed, we have maintained a vacuum of < 10−10

Torr for over 5 years.

2.2.1 Baking

Right after assembling for the first time, we baked the entire chamber in an oven for 3

weeks while rough-pumping through a bellows passed through a hole drilled into the side

of the oven (Figure 2.4). We were careful not to exceed an oven temperature of 200◦C

(130◦C as measured by thermocouples inside the oven) to avoid damaging the glass cell
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Figure 2.4: Baking the chamber in an oven. Wires are thermocouples mounted
to the 1/2” optical posts for sampling the temperature at different places (we did
this to monitor any temperature gradients). Bellows were passed through a hole
drilled into the oven wall for rough pumping during baking.

epoxy bonding.

2.2.2 Flooding with Alkali Vapor

When first booting up the experiment, there was very little alkali vapor pressure until

we had left the dispensers on for several hours. Presumably this was because the inner

surface of the glass cell acts like a sublimation pump until it has been coated with an

alkali monolayer. For Cs, this can take 11 hours starting from an empty chamber at ≈

4.5 A dispenser current.

We attempted UV LIAD (light induced atomic desorption) [85] using a Thorlabs M365L2

(nominal wavelength 365 nm) to transiently increase the local Na vapor pressure and
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Figure 2.5: Photo of coils and mount. The coordinate system referred to
throughout the rest of this thesis is defined here by the coil mounts. (Not shown:
The cell axis is along x; the objective axis is along y and enters from the right.)

hence the Na MOT loading rate, while maintaining a low steady-state vapor pressure.

However, we were unable to observe significant desorption, likely due to the AR coating

on the inside of our glass cell.

2.3 Electromagnetic Field Coils

We use 4 pairs of hand-wound coils to apply the desired time-varying magnetic fields and

field gradients (Figure 2.5). The mount is custom-machined out of Ultem 30% GF 2300
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Name ID [mm] OD [mm] # layers Separation
[mm]

B field /
Control
voltage

MOT 66.8 82.85 8 45 1.423
G/cm/V

X Shim 111.69 128.31 10 60 3.602 G/V
Y Shim 166.78 153.22 8 80 0.738 G/V
Z Shim 90 - 8 45 1.316 G/V

Table 2.1: Specifications for field coils. All coils are wound with 20 AWG mag-
net wire. The shim coils are connected in series in Helmholtz configuration while
the MOT coils are connected in series in anti-Helmholtz configuration. The MOT
coils are nestled inside the Z Shim coils. The Z Shim coils’ outer diameters are un-
constrained. All coils have eight turns per layer. The maximum suggested current
is 1 A for the shim coils and 4.5 A for the MOT coils. Resistance is measured for
both coils in series. X Shim and MOT coils use a 3A/10V current servo; all others
use 1A/10V current servo.

for its strength, UV resistance, low thermal expansion coefficient, and electrical insula-

tion.

Specifications are listed in Table 2.1.

2.4 “Apparatus Side” Laser Beams

An overview of the lasers on the “apparatus side” is shown schematically in Figure 2.6.

At the vacuum chamber, 2 mW of Cs MOT and 5 mW of Na MOT light are expanded to

6 mm beam diameter and combined before being directed into the chamber in a typical

6-beam configuration, arranged to avoid the objective. The yaw of one mirror in each

of the 3 MOT arms is vibrated with a piezo electric stack (Thorlabs AE0203D08F and
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Figure 2.6: “Apparatus side” laser beam path. (A) Top view, with glass
cell and objective for reference. Green arrows denote MOT beams. The beams’
propagation direction and polarization (linear or circular) are indicated with arrows.
All beams contain co-propagating 852 nm and 589 nm light. Their polarization
is initially “cleaned” up with a wavelength-specific PBS, then the two colors are
combined on a dichroic. For the Cs OP we use a Glan-Taylor polarizer instead of
PBS for better polarization purity. The MOT beams are 6 mm in diameter and
their pointing directions are vibrated at 1 kHz with piezo mirrors (pM; see text).
Cartesian axes represent the coordinate system used throughout this thesis. (B)
Side view, with glass cell for reference. Green arrow denotes vertical MOT
beam, which is co-propagating with vertical Raman beams.
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AE0203D04F) at 1 kHz at the maximum allowable peak-to-peak amplitude. We found

this to be critical for MOT stability.

The retro-reflecting mirrors for the horizontal beams (which enter the glass cell at an

angle) are in a near-cateye configuration. Originally this was to slightly focus the return-

ing beam to compensate for power loss after transmission through the glass cell and bal-

ance the forward and backward MOT beam intensities at the MOT position. However,

we have found that, although the lenses are critical for achieving a stable and overlapping

dual MOT, their optimal position does not necessarily correspond to balancing of forward

and retro-reflected beam intensities. The gradient field for both MOTs, which are formed

simultaneously, is 9 G/cm.

All 6 MOT beams are coarsely aligned relative to the coils with the aid of 5 custom

3D-printed targets which can be popped in and out of the coil mount assembly. Fine

alignment of the dual MOT so that they both overlap at the tweezer position entails it-

erating between using the shim B field to move the Cs MOT, then tweaking the mirror

alignments to move the Na MOT.

2.5 Tweezer/Single Atom Imaging

An overview of the setup for dual-species single atom trapping and imaging is shown in

Figure 2.7.

The 700 nm and 976 nm beams are outcoupled from fibers using the TC06APC-633
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Figure 2.7: Schematic of the setup for dual-species single atom trapping
and imaging. Beams for both 700 nm and 976 nm optical tweezers are indepen-
dently steered by acousto-optic deflectors. Li denotes lens i with focal length fi.
The beams are expanded by Keplerian telescopes, and then combined on a dichroic
mirror before being focused by the objective into a glass cell. Fluorescence from
trapped Na and Cs atoms is collected through the objective and redirected onto
the EMCCD camera with a custom. Note: optical path lengths are not preserved
(for example, the optical path length from L2 and L4 to the objective are almost
identical in real life). RF drive is applied to both AOD’s to position the tweezers.
Dashed arrows show that scanning the Cs RF drive frequency moves the Cs tweezer
in the focal plane.
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Parameter Value
f1 50 mm
f2 750 mm
f3 60 mm
f4 750 mm
f5 400 mm
w1 0.41 mm
w2 7.5 mm
w3 0.56 mm
w4 8.2 mm
M976nm 15
M700nm 12.5

Table 2.2: Focal lengths f , beam waists w, and telescope magnifications
M in imaging/trapping setup (Figure 2.7). The focal lengths are nominal
values from the product specifications, and the beam waists are calculated based on
propagating the gaussian beam using ABCD matrices (Appendix A.1)

Figure 2.8: Keplerian telescope (with optical path lengths preserved)
system to image beam deflection from AOD onto objective back plane.
Dashed black line shows the path of a deflected ray, showing how magnifying the
beam diameter necessarily de-magnifies the deflection angle by the same amount
(angles exaggerated).
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and TC06APC-980 triplet collimators with 0.56 mm and 0.655 mm nominal output beam

waist, respectively. The 976 nm beam is additionally shrunk by a 400 mm by 250 mm Ke-

plerian telescope to a waist of 0.41 mm. The 700 nm and 976 nm beams are then sent

into acousto-optic deflectors (AODs). The beams are expanded using Keplerian tele-

scopes, and then combined on a dichroic mirror before being focused by the objective

into the glass cell. Expanding the beams saturates the NA of the objective and yields the

tightest focus. In addition to expanding the beam diameter by a factor of M , the Keple-

rian telescope images the beam deflection from the AOD onto objective back plane, where

the deflection angle is de-magnified by a factor of M (the ray optics argument is shown in

Figure 2.8).

Fluorescence from trapped Na and Cs atoms is collected through the objective and

redirected with a custom dichroic (CVI DS 852/589-T650, with nearly 100% reflection at

852 nm and 589 nm) onto the EMCCD camera.

The objective is a custom NA=0.55 superachromat (500-1000nm) from Jenoptik. From

Gaussian beam optics, the objective focuses the beam down to a waist of w0 and Rayleigh

range zR = w0/NA, giving a prolate spheroid (“cigar-shaped”) trap. Near the center of

the tweezer, the atom experiences a harmonic potential with oscillation frequencies

ωrad
trap =

2√
mw2

0

in the two degenerate and tightly confined transverse “radial” directions, and

ωax
trap =

1√
mz2R
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Figure 2.9: AOD diffraction efficiency curves. We scan the AOD RF drive and
measure the fraction of optical power diffracted into the 1st order.

in the loosely confined longitudinal “axial” direction.

As mentioned in Subsection 6.6.1, we scale zR up by a factor of 1.39 to account for

aberrations and the clipping due to the aperture size of the objective. This gives a trap

frequency ratio of ωrad/ωax ≈ 5, which is about what we observe in later sections.

The objective is compensated for 6 mm of glass; 4 mm for the glass cell wall and 2 mm

for ITO coated glass plates for applying electric fields to polarize the NaCs molecules. It

is mounted to 5-axis New Focus 9081 alignment stage via a custom adapter.

2.5.1 Acousto-Optic Deflectors

We use 2D acousto-optic deflectors (AODs), IntraAction A2D-563AHF3.11 and A2D-

603AHF1.65 for the 976 nm and 700 nm tweezers, respectively. The AOD consists of a

large (18 mm×18 mm clear aperture) acousto-optic medium that is excited with acoustic

waves along the horizontal and vertical directions by piezoelectric actuators driven at RF.
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Similar to in an AOM, the incoming laser beam is split into multiple Bragg diffraction

orders along the RF acoustic wave propagation directions. We optimize the alignment to

put as much power into the first order as possible.

The unique feature of AOD’s is that the piezoelectric actuators are arranged in a phased

array. This rotates the acoustic wavefront as the radio-frequency is varied, so that the

Bragg condition is maintained across a large RF bandwidth (Figure 2.9). This enables us

to move the tweezer over long distances while maintaining adequate trap depth. However,

the phased array also means that, unlike in an AOM, the AOD deflection bandwidth is

not symmetric with respect to ±1 diffraction orders.

RF to tweezer displacement. We can calculate the amount by which the tweezer moves

for a given change in RF drive frequency as follows. The beam deflection angle ∆θ corre-

sponding to a change in drive frequency ∆fAOD is given by

∆θ/∆fAOD = λ/vc (2.5.1)

where λ = 976 nm is the optical wavelength and vc = 3630 m/s is the speed of

sound in the acousto-optic medium. For the 976 nm tweezer, we obtain ∆θ/∆fAOD =

2.7 × 10−4 rad/MHz. As shown in Figure 2.8, this angle is de-magnified by M = f2/f1 =

15 (Table 2.2). At the back-plane of the objective, we therefore obtain ∆θ/∆fAOD =

1.8× 10−5 rad/MHz. The effective focal length of the objective is 16.2 mm, so the tweezer
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displacement is approximately

dtweezer/∆fAOM = 0.29 µm/MHz (2.5.2)

There are two types of AODs: longitudinal and shear, which describe the mode of

acoustic wave propagation. Longitudinal waves travel at vc ≈ 3600 m/s in the medium

while the shear waves travel 6× slower. Our AOD uses the former. The choice of AOD

has implications for time-dependent beating of neighboring tweezers, maximum travel

range, and maximum achievable number of traps. None of these affect the work in this

thesis, but will be important for scaling the system up to many tweezers in the future.

Beating between neighboring tweezers. From Equation 2.5.2, two 976 nm tweezer traps

1 µm apart will have optical carrier frequencies 3.4 MHz apart, meaning the trap depths

(proportional to the optical intensity) will oscillate at 3.4 MHz. If this is twice the trap

frequency, it can lead to parametric heating of the Cs atom [86]. For typical trap frequen-

cies of Cs in a tweezer (∼ 100 kHz), this is not an issue. However, for shear mode AOD’s,

the beating frequency at 1 µm separation would be comparable to the radial trap frequen-

cies of Na (∼ 500 kHz).

Tweezer travel range. Combining Equation 2.5.2 and Figure 2.9B, which shows an

AOM bandwidth BW≈ 35 MHz, we can move the tweezer about 10 µm before the diffrac-

tion efficiency of the AOD drops to half the peak value. Using a shear mode AOD would

increase this range by about 6 times (letting vc → vc/6 in Equation 2.5.1).
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Number of resolvable traps. Assuming the laser is a collimated gaussian beam at the

AOD with waist ω0, its divergence is given by λ/(2ω0). We can estimate the number of

resolvable traps Ntraps by taking the ratio of the total angular bandwidth divided by the

divergence of a Gaussian beam.

Ntraps = BW ∆θ/∆fAOD = 2 BW ω0/vc (2.5.3)

Optimal beam waist at the objective. We calculated the optimal beam waist at the ob-

jective wobj to be 7 mm (Appendix A.2.1). This is the waist that maximizes the trap fre-

quencies experienced by the Cs atom for a given total optical power (optimizing for the

700 nm tweezer for the Na atom gives a similar result). The larger the waist, the more

plane wave-like the input beam wavefront is, and the more tightly it will be focused by

the objective, yielding higher trap frequencies. However, at larger beam waists, more opti-

cal power gets clipped by the objective aperture which reduces the trap depth and hence

trap frequency. The optimum waist at the objective is determined by the balance of these

two effects.

Beam waist at the AOD. Fixing the beam waist at the objective requires Mtel × wAOD

to also be fixed, where Mtel is the telescope magnification and wAOD is the beam waist at

the AOD.

wAOD is bounded from above by the transverse size of the acoustic wave in the AOD.

Also, larger wAOD corresponds to smaller Mtel, leading to greater Ntraps and travel range

but more risk of parametric heating due to beating between neighboring traps. On the

28



other hand, small wAOD is associated with a large transverse k−vector bandwidth, lead-

ing to reduced diffraction efficiency.

In this work, we chose wAOD somewhat arbitrarily, but the above-mentioned trade-offs

will become important when scaling the system up to many tweezers.

2.6 Camera

Basics. The fluorescence from trapped single atoms is imaged onto an EMCCD with a

400 mm achromat (Thorlabs AC-508-400-B; L5 in Figure 2.7) on a z−translation stage.

This magnifies the atom by f5/fobj = 25 onto the EMCCD camera (Andor iXon Ultra

897, Model no. DU-897U-CS0-BVF). We optimize the lens z−position by minimizing the

spot size of the trapped atom. The sensor (E2V/CCD97-00-1-172) is 512 × 512 pixels.

Each pixel is 16× 16 µm2.

Color filtering. We stack 4 filters in series in front of the camera aperture: 700 nm

notch filter (Omega Optical 3056633), 900 nm shortpass filter (Thorlabs FESH0900), and

Semrock 589 nm and 850 nm bandpass filters.

Signal level. To determine the presence of atoms, we image them with near-resonant

light for a few ms. During this time, the atoms scatter ∼ 104 photons/s. The collection

efficiency of the NA= 0.55 objective is 2π × (1 − cos(arcsin(0.55))/(4π) = 8% of all

photons emitted into 4π sr. The EMCCD QE is close to 100% and 60% for 589 nm and

852 nm, respectively (Figure 2.10). Therefore, about 8% and 5% of photons emitted by
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Na and Cs (i.e., a few hundred), respectively, make it onto the camera in a single shot.

Noise. For low light-level applications (such as imaging single atoms), noise in CCD’s

is dominated by that arising from the process of converting photoelectron counts to a

voltage, termed “readout noise”. The “EM” (electron-multiplying) gain in an EMCCD

amplifies the photoelectron count via an avalanche impact ionization effect prior to read-

out, thereby effectively suppressing the readout noise (however, the EM gain also adds

a noise factor due to the stochastic nature of the amplification process which tends to
√
2 for large EM gain [87]). In our experiment, typically the EM gain is set to 20, just

enough to overcome readout noise in order to prolong the EM gain register lifetime [88].

Dark current falls exponentially with temperature, so we additionally cool the camera to

−90◦C using the internal thermoelectric cooler and external water cooling (Solid State

Cooling Systems Oasis 150 Chiller).

Back-illumination. Back-illumination means that incoming photons can strike the pho-

tosensitive region directly, making the quantum efficiency (QE) up to 100% compared

to typically < 50% for more standard “front-illuminated” EMCCD’s. The QE vs. wave-

length curve is shown in Figure 2.10 and is optimized for visible and near-IR light.

Fringe suppression. In back-illuminated EMCCD’s, an etalon forms between the front

and back surfaces of the photosensitive region, leading to a background signal with long

spatial wavelength modulations. Our EMCCD’s have a roughened back surface of the

photosensitive region to reduce the etalon Q-factor. The fringes can still be seen (Fig-

ure 2.11) but are now highly suppressed.
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Figure 2.10: QE vs. wavelength for EMCCD sensor. We use the BVF option
(green curve). Figure from: Ref. [89].
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Figure 2.11: Suppressed fringes visible on EMCCD due to etalon. The
illumination comes from the Na MOT fluorescence.

2.7 Generation of Laser Frequencies

2.7.1 Cs Lasers

• The Cs MOT lasers are derived from two 852 nm DBR laser diodes (PH852DBR240TS).
The first DBR (“Cs RP”) is locked to the 62S1/2, F = 3 → 62P3/2, F

′ = 3/4

crossover transition using saturated absorption in a Cs vapor cell, then shifted
up by +100.62 MHz with a switching AOM to be resonant with the repumping
F = 3 → F ′ = 4 transition. The second DBR (“Cs MOT”) is beat locked to the
first with an offset of ∼ 9 GHzto be resonant with the cycling F = 4 → F ′ = 5

transition.

• Optical pumping is provided by the same DBRs. Both beams are tapped off with
a HWP and PBS to provide light for optical pumping. Optical pumping (“Cs OP”)
for Cs is performed on the 62S1/2, F = 4 → 62P3/2, F

′ = 4 transition, while the
repump frequency (“Cs OP/RP”) is identical to before. To obtain the Cs OP fre-
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quency, the beat lock can be rapidly jumped (960 MHz in < 400 µs) by -251 MHz,
to switch from the cycling transition (MOT, imaging) to the optical pumping tran-
sition.

• Cs Raman F3 and F4 beams are derived from separate ECDLs (New Focus Van-
tage TLB7115-01) which are phase-locked to each other with a frequency offset of
9.2 GHz.

• The 976 nm tweezer is derived from a free-running, intensity servoed DBR laser
(PH976DBR280TS).

2.7.2 Na Lasers

• Na MOT light is derived from a frequency doubled Raman fiber amplifier that is
seeded by a 1178 nm ECDL (TimeBase ECQDL-1178). The cooling and the re-
pumping frequencies are generated from the same laser by sending it through a 1.7
GHz AOM (Brimrose TEF-1700-100-.589).

• Optical pumping for Na is provided by another TimeBase 1178 nm ECDL that is
frequency doubled with a PPLN waveguide (NTT Electronics WH-0589-000-a-b-
c). Optical pumping on the D1 instead of D2 line is necessary to avoid unwanted
off-resonant cycling transitions in the Na D2 line due to the small excited-state hy-
perfine splitting. All lasers for Na are locked via saturated absorption spectroscopy
to a vapor cell.

• The Na Raman laser consists of a free-running 1178 nm ECDL that is frequency
doubled with a NTT doubler. The F1 and F2 frequencies are generated from the
same beam using a 1.7 GHz AOM.

• The 700 nm optical tweezer is derived from a cavity-locked intensity-servoed Tita-
nium sapphire laser (M Squared SolsTiS).
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2.7.3 1038 nm PA/ Molecular Raman Transfer Laser

The 1038 nm laser for deeply-bound PA and molecular Raman transfer (Chapter 9) is

based on an Innolume GM-1060-150-PM-250 gain module (“butterfly laser”). The out-

put facet is coupled directly into an optical fiber. The back facet is AR coated, to pre-

vent self-lasing, and couples to free space. An external collimating lens and grating on

the back side defines the cavity and lasing wavelength. The laser can nominally be tuned

over 150 nm, centered about 1060 nm, by changing the angle of the external grating. The

package also contains an integrated TEC and thermistor.

The laser is shown in Figure 2.12. The chip is mounted to an aluminum block for heat

sinking. A collimating lens (Thorlabs C392TME-C) is mounted into a Thorlabs 30 mm

cage plate, which is bolted directly to the Al block. The collimating lens z−position is

adjusted by clamping varying layers of shim stock between the cage plate and Al block.

The clearance holes in the cage plate for bolting it to the Al block allow for some x − y

adjustment before it is bolted down. The non-adjustable collimating lens assembly was

intended to prevent drifts.

A blazed grating (Thorlabs GR13-1208) is used for feedback, to minimize power loss.

It is glued to a Newport U100-A3K kinematic mirror mount, bolted to the same bread-

board as the back facet of the gain module, making an external cavity ∼ 4 cm long. We

replaced the mirror knob that changes the grating feedback angle with a Newport 8322NF

picomotor in series with a piezoelectric actuator (Thorlabs AE0505D08F). They provide
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Figure 2.12: Innolume 1038 nm butterfly laser without cover. One side of
the cavity is determined by the external grating, which provides feedback. The grat-
ing is glued to a kinematic mirror mount and its angle is adjusted by the picomotor
(coarse tuning) and piezo actuator (fine tuning). The gain chip is mounted to an
aluminum block heatsink. The output is permanently fiber coupled. Thick white
arrow on grating mount shows blaze arrow direction.
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coarse and fine tuning of the feedback angle, respectively. The piezo is driven by a 10×

high-voltage power amplifier (PA441). We opted not to use a strain gauge. The tempera-

ture can be adjusted with an external voltage to allow fine-tuning of the laser frequency.

We found it was best to collimate the laser output without the grating in the way (i.e.,

so that we could observe long Rayleigh ranges), and then place the grating. The colli-

mation is not to be adjusted thereafter. Finally, the laser was enclosed to minimize air

currents and temperature changes to improve the frequency stability.

To achieve ∼ 50 GHz modehop-free tuning, we found it was necessary to tune grating

angle and diode temperature simultaneously. The relationship should be linear and we

refer to the ratio between their control voltages as the feedforward coefficient. Tempera-

ture, rather than current, was the more desirable feedforward variable because it is almost

entirely decoupled from output power.

We had also fortuitously mounted the grating away from the pivot of the mirror mount,

such that tuning the grating angle also changed the cavity length. In fact, it later became

apparent that the cavity length tuning was critical to maintaining single mode operation.

Figure 2.13 shows how we optimized the feedforward coefficient. First, the manual cur-

rent, grating angle, and temperature control knobs are adjusted to place the laser in the

center of a mode-hop free region near the desired wavelength. In the computer control,

we set a linear relation between the piezo voltage Vpiezo and temperature control voltage

VPA temp. Then, for different values of the feedforward coefficient, we scan the tempera-

ture in steps while monitoring the laser frequency on a wavemeter. Typically, the laser
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Figure 2.13: Optimizing feedforward coefficient of butterfly laser. PA fre-
quency as a function of temperature control voltage for increasing (left to right)
feedforward coefficients. Small steps are due to finite dwell time at each control
voltage during the measurement. Large steps (e.g., as indicated by vertical dou-
ble headed arrow) are the result of modehops. The data are fit to a line (red line)
with slope and offset indicated above each plot. The feedforward coefficient is op-
timized when the large step structures disappear, indicating modehop free tuning
throughout the range of interest.

frequency will increase linearly with VPA temp, jump to a lower frequency when a mode-

hop is reached, and continue increasing, yielding a sawtooth-like pattern. As the feedfor-

ward coefficient is increased toward the optimum value, jumps occur at larger and larger

intervals until finally a large modehop-free tuning range is achieved.
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Chapter 3

Optical Tweezers

3.1 Introduction

Typically, an imaging system is characterized by its resolution, or how well it can distin-

guish neighboring point sources. For tweezer experiments, the issue is not distinguishing

nearby point sources per se, since we can move the atoms almost arbitrarily far apart

to image them. However, distinguishing the tiny amount of fluorescence from an atom

(which is localized) from background counts (which are de-localized) is still contingent on

mapping of point sources in the image plane to unique transverse k−vectors (plane waves)

in the Fourier plane (Figure 3.1). These unique plane waves are then refocused (L5 in Fig-

ure 2.7) onto the camera, ideally back into distinct points which can be easily picked out

from a diffuse background. Incidentally, generating the tightest possible tweezer is the

same problem in reverse: all incoming rays with the same k-vector must be mapped to
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Figure 3.1: Model of the ideal objective for imaging. Spherical waves em-
anating from two separated point sources are mapped to distinct (transverse) k-
vectors, i.e., to plane waves.

the same point in the focal plane.

This duality allows us to speak about imaging single atoms and generating tweezers

interchangeably. Therefore, the two roles of the objective– single atom imaging and gener-

ating tight tweezer traps, can both be characterized with traditional measures of imaging

quality (Subsection 3.2.2).

Finally, an important distinction between our experiment and other single-atom tweezer

experiments is the range of wavelengths required due to the two species involved. Specif-

ically, the trapping wavelengths are 976 nm and 700 nm, and the imaging wavelengths

are the alkali atoms’ respective D2 transition wavelengths, 852 nm and 589 nm. We shall

only rely on numerical simulations to verify the achromaticity of the objective, since we

can always compensate for residual imperfections, for example, relative focal shift of the

700 nm and 976 nm tweezers, in situ (Appendix A.1.1).

In this Chapter, we introduce basic imaging concepts. Then, we numerically and exper-

imentally verify that the imaging/trapping system performs at the diffraction limit, and
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in spite of realistic experimental imperfections. Finally, we discuss in situ optimization of

objective alignment, including final alignment based on actual measurements of the trap-

ping frequency.

3.2 Basic Concepts

3.2.1 Diffraction Limit

The diffraction limit reflects two fundamental limitations of imaging in the far-field. First,

even an infinitely large objective can only localize a point source to within the wavelength

of imaging light λ. Moreover, our finite-sized objective covers less than half the solid an-

gle (NA< 1) of the single atom. These two factors are summarized by the Abbe diffrac-

tion limit. The minimum resolvable spot size d for an otherwise perfect imaging system is

given by

d =
λ

2NA (3.2.1)

Therefore, in what follows, we shall always characterize our objective by comparing it

to the “diffraction-limit”, beyond which merely adjusting the alignment can’t improve

performance.
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3.2.2 Aberrations

The following discussion is based on Ref. [90].

Real imaging systems have imperfections: deviations from cylindrical symmetry about

the optic axis (e.g., due to tilts or offsets of certain optical elements, or imperfect optical

surfaces), or incorrect distances between optical elements. In the context of trapping, fur-

ther errors arise from the fact that the beam entering the objective is a Gaussian beam

and not a perfect plane wave.

These imperfections lead to aberrations, or deviations from diffraction-limited perfor-

mance. Typically, the most important aberrations will be astigmatism, coma, and spher-

ical aberration 1. The effects of aberrations on imaging quality can be quantified in sev-

eral ways:

1. Point spread function (PSF): Here, we define it as the 2D intensity distribution
formed at the objective focus for a plane wave input. This is the most comprehen-
sive measure, giving information about the imaging resolution and the maximum
trap depth and trap frequency achievable.

2. Strehl ratio: Peak intensity of actual PSF, normalized to that of the theoretical
diffraction-limited case. This is a single, convenient number which directly gives
the maximum trap depth achievable. However, different combinations of aberra-
tions can lead to the same Strehl ratio, so it does not help pinpoint the source
of aberrations. Typically a Strehl ratio > 0.8 is considered “diffraction-limited”
(Maréchal criterion).

1Provided we are sufficiently achromatic (so that the tweezer and fluorescence wavelengths are
focused at the same point), defocus and tilt are not issues because, in the real experiment, the
atom follows the focal point of the objective! So defocus and tilt merely indicate misalignment of
the test setup.
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3. Wavefront error: 2D map of phase deviation of the wavefront (usually in the Fourier
plane) from that of an ideal plane wave, in units of “waves” (= 1 full cycle of the
optical frequency). For finite-sized Gaussian beams, there will always be some wave-
front error in practice. This contribution can be suppressed by using large-diameter
beams at the input of the objective. Also, since wavefront error only carries phase
information, it is relatively insensitive to de-centering of the incoming beam on the
objective aperture, which leads to excess clipping of optical power and loss of trap
depth. On the other hand, decomposing the wavefront error into Zernike polyno-
mials (orthogonal basis functions on the unit disk) is a helpful way to pinpoint the
other main sources of aberration mentioned above.

4. RMS wavefront error (Φ): The RMS of the wavefront error taken over the exit
pupil. Like the Strehl ratio, this is a single number for making quick comparisons,
but does not give insight on the exact source of aberrations. The RMS wavefront
error and Strehl ratio are related through Strehl ratio ≈ e−(2πΦ)2 , valid as long as
Φ < 1/10 waves. The Maréchal criterion is equivalent to Φ < 1/14 waves.

In the experiment, we will be able to optimize on the atoms directly (Section 3.5.1),

so the above measures are not the final arbiter of good alignment. We use whichever is

convenient at the time.

3.3 Numerical Simulations

First we simulate the objective, glass plate, and glass cell in Zemax. This allows us to

examine the effect of tilts and thicknesses of the glass surfaces in the beam path. In the

experiment, we would send a collimated Gaussian beam (determined using a shear inter-

ferometer) as input to the objective. We approximate this in Zemax with infinite plane

waves of 660 nm and 980 nm.
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Point Spread Function. In Zemax, we model 6 mm of fused silica (representing the

glass cell and glass plate) 5 mm after the objective. The PSF at the focus is calculated

to be an Airy disk with Airy diameter (diameter of first dark ring) d = 1.44 µm, less

than 2% from the estimate based on the Rayleigh criterion 1.22λ/NA. The Strehl ratio

is 0.982. For 980 nm we find d = 2.12 µm, less than 3% from the estimate based on the

Rayleigh criterion. The Strehl ratio is 0.953. Both wavelengths are focused to a working

distance of 16 mm, and within 1 µm of each other.

Focal Shift. Both 980 nm and 852 nm focus to within 1 µm of each other, whereas

650 nm focuses 1 µm earlier and 589 nm 1 µm later. For the two tweezers its impor-

tant to note that we can adjust the telescope collimation to make the two tweezer col-

ors confocal, so it is not critical if the two colors are defocused at this stage. Specifically,

we find that moving L2 in Figure 2.8 by 2 mm shifts the tweezer focus by −1 µm (Ap-

pendix A.1.1).

A potential issue is that the chromatic shift between trapping and fluorescence wave-

lengths might degrade the PSF obtained from imaging the trapped atom. We can test

this by placing a 852 nm point source 1 µm from the ideal focal point of the objective

for 852 nm light. Using a 500 mm achromat as the imaging lens, the RMS radius of the

image spot increases from 8 µm to 15 µm, which is still less than a single pixel of our

camera (Section 2.6). We conclude that a chromatic shift of 1 µm between trapping and

fluorescence wavelengths is not an issue.

Translation of glass plate Displacing the glass plate along the optic axis by 2 mm changes
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the spot size by 10%, a negligible amount.

Glass thickness. The Strehl ratio remains above 0.8 for ±50 µm deviation in glass

thickness. The thickness of the actual glass plate was measured to be 1.981 ± 0.001 mm

and Japan Cell has specified the cell wall thickness to be 4.02 ± 0.05 mm, so glass thick-

ness deviations should not be an issue. Additionally, glass thickness deviations can be

compensated for by changing the divergence of the input beam to the objective.

Glass tilt. For this test we looked at the “spot diagram”, which shows where rays of

light incident on the objective would fall in the focal plane. Diffraction limited perfor-

mance, as indicated by all rays falling inside the Airy disk, occurs for the range of tilts

< 0.01◦ of the 2 mm glass plate. We did not test for the glass cell even though it is twice

as thick and therefore should be more sensitive. We therefore anticipate that tilts of the

objective and glass surfaces will contribute the most significant aberrations.

3.4 Experimental Characterization of Aberrations

We characterize the objective by examining the wavefront error obtained from imaging

a point source. As alluded to in Figure 3.1, we can substitute the point source with a

reflective sphere since both give off spherical wavefronts.

The white light interferometer, described in Ref. [91] and shown in Figure 3.2, mea-

sures the error of these reflected plane wavefronts by interfering them with wavefronts

reflected directly off a λ/20 fused silica optical flat (I in Figure 3.2) in a Fizeau interfer-
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Figure 3.2: White light interferometer setup. Left: Optical delay-line.
“White” light enters from a fiber (A); is split by a BS (D) into two arms. The move-
able arm (B) has a cateye retroreflector with piezoelectric actuators for fine length
control and mounted on a translation stage for coarse length control. The other
arm (C) has a fixed path length. The two arms are recombined on the BS and fiber
coupled into (E). Center: Fizeau interferometer. Light enters through fiber
(F), is expanded with a telescope (G, H), transmitted through the reference optical
flat (I), and enters the imaging setup under test (J). The beams retroreflected from
I and J are picked out by a beamsplitter with orientation indicated by black line
(K) onto a CMOS camera (L) to image the interference fringes. Right: Closeup
of imaging setup under test (J). A glass plate glued to the objective (M) serves
as a reference to facilitate alignment with the glass plate (N) and glass cell (O).
The light focused by the objective is incident on a sphere (P) which reflects the
light back through the objective just as a point source would emit light.
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A B

Figure 3.3: Raw interferograms between wavefronts in the Fourier plane
of imaging system and reflection from a reference flat (λ/10 flatness mir-
ror, in this case). (A) After aligning the imaging system “by eye”. Many
fringes indicate several waves of deviation from the ideal wavefront. Concentric
features indicate misalignment along z (for example, de-focus); striped features indi-
cate transverse misalignment (for example, de-centering). (B) After aligning the
imaging system based on the interferogram. We adjusted the sphere position
and tilts of the reference flat, objective, and glass plate. The lack of interference fea-
tures means that the wavefront is close to being ideal. The dark spot which appears
in both interferograms is probably dust.
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ometer configuration. The Exalos SLED light source with 30 µm coherence length, com-

bined with the tunable optical delay-line (Figure 3.2A), ensures that only reflections from

the two surfaces of interest, the sphere and reference flat, contribute to the interference

pattern. Example interferograms are shown in Figure 3.3. In software (Intelliwave), we

can obtain the RMS wavefront error as well as the full decomposition into Zernike polyno-

mials.

A reference sphere (ACER 2.0 mm Ceramic Silicon Nitride Balls) is epoxied to a water-

jetted stainless steel arm that extends into the glass cell (P in Figure 3.2). The arm is

rigidly mounted to a stage that can be translated in 3D with micrometer screws.

Unlike the reference sphere, trapped atoms will follow the objective focus around. There-

fore, we recenter the sphere on the objective and subtract tilt and de-focus aberrations (in

software) as needed to obtain the wavefront errors we would expect from imaging sin-

gle atoms. Note that this procedure makes us insensitive to collimation of the incoming

light and de-centering of the objective relative to the incoming beam. The main effect of

de-centering is to clip the optical power and reduce the achievable trap depth, which is

captured by the Strehl ratio but not by the wavefront error.

First, we optimize the alignment of everything to obtain a RMS wavefront error as

small as 0.04 waves. This is consistent with the quoted λ/20 flatness of the reference

optical flat alone, indicating that the objective is diffraction limited when everything is

optimally aligned.

Next, we study the effect of various imperfections in optical alignment and give the
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Imperfection Aberrations Magnitude
Objective tilt Coma 0.21 waves/degree
Objective tilt Astigmatism 0.12 waves/degree
Glass plate tilt Coma 0.09 waves/degree
Glass plate tilt Astigmatism 0.09 waves/degree

Table 3.1: Summary of measured aberrations for various alignment imper-
fections.

weights of the most significant Zernike polynomials. The results are summarized in Ta-

ble 3.4.

We did not have reliable data on objective shift due to mechanical instability of the

reference sphere, although we predict that de-centering the objective should not introduce

significant wavefront error anyway.

3.5 In Situ Optimization of Objective Alignment

We have verified that the objective, glass plate, and glass cell can in principle achieve

diffraction limited trapping and single-atom imaging performance, assuming they are

perfectly aligned. However, in the real setup which is under vacuum, we must be able

to reproduce this optimal alignment without the benefit of a reference sphere.

The glass cell and glass plate can easily be made parallel, by overlapping the reflections

from a collimated laser beam sent normal to both surfaces.

The holder for the glass plate is shown in Figure 3.4. It rests on the glass cell and has

screws in each corner of both glass plates with which to adjust the angle relative to the
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Figure 3.4: Electric field plate and holder. Left: newly built; Right:
mounted on glass cell. A: Electrical leads; B: ITO coated glass plates; C: ad-
justment screws; D: microscope objective; E: Z Shim B field coils.

glass cell.

We use a similar idea to align the objective normal to the glass plate. We glued a glass

reference plate (5 mm strip cut from a Laseroptik S-00017 plate) with Scotch Weld 2216

to the “lip” of the objective housing (Figure 3.5A), which was guaranteed by the manu-

facturer to be normal to the optic axis. The schematic for how we determine alignment of

the objective and glass plate is shown in Figure 3.5C.

With the white light interferometer setup, we verify that this procedure gives 0.02

waves of horizontal and vertical tilt aberration between the glass cell and glass plate, and

0.01 waves of horizontal and vertical tilt aberration between the objective and glass plate.

Finally, we align the incoming beam to the objective (Figure 3.6). The bore at the

rear of the objective adapter is SM1-threaded so that a mirror (M) can be screwed on
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Figure 3.5: Glass reference plate for aligning objective in situ. (A)
Schematic of objective housing. Arrow points to the “lip” which is guaran-
teed to be perpendicular to the optic axis (image credit: Dan Sykora, Jenoptik).
(B) Our objective with the glass plate glued to the lip. Arrow indicates
glass plate. The objective is mounted to the custom aluminum adapter. Note the
objective cover is on. (C) Aligning the objective and glass plate. An align-
ment beam is simultaneously reflected off the glass reference and glass plate. The
reflected beams are picked off with a BS. The two reflected beams overlap very far
away only when the objective is perpendicular to the glass plate.

for retroreflecting the incoming beam. We place irises I at various points along the beam-

path. Not shown are two mirrors between L2 and I3 for performing the alignment.

1. Centering of the beam is done by closing I2 to shrink the beam, and adjusting one
of the aligning mirrors to send the beam through I3.

2. In general, this will cause the beam to no longer be normal to the objective. Open
I2 and I3. The (now tilted) retroreflected beam will take a path schematically de-
picted by the dashed line. Adjust the other alignment mirror so that the retrore-
flected beam re-enters I1.

These two steps are repeated until they converge. It is important that I1 is placed a

large distance D from the focus of L1, to be maximally sensitive to the objective tilt.
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Figure 3.6: Setup for aligning the incoming beam to the objective. Irises I
are placed at three points. A mirror M and iris I3 are mounted to the back of the
objective to retroreflect and aperture the incoming beam, respectively. The dashed
line shows the path of the retroreflected beam if the objective were tilted as shown.
Not shown are two mirrors between L2 and I3 that we use to align the incoming
beam. See text for alignment procedure.

3.5.1 Measuring Trap Frequencies

At this point, we are already able to trap and image single atoms (Chapter 4). However,

later it will be critical to maximize the axial trap frequency for a given amount of input

optical power, since that will limit the speed of Raman sideband cooling (Chapter 5). To

that end, here we use parametric heating of the trapped atoms to measure the trap fre-

quencies.

Modulating the trap depth at ωmod = 2ωtrap parametrically heats the atom at a rate

proportional to ω2
mod [86]. We modulate the trap depth by 10% peak-to-peak for tmod =

π × 108/ω2
mod, then abruptly lower the trap to 0.4 mK for 3 ms (much longer than the

inverse axial trapping frequency) to efficiently lose atoms. Atom loss resonances appear at

ωmod = 2ωtrap, as well as at subharmonics (Figure 3.7). Note that the ratio of radial to

axial trap frequencies is 9, which is higher than we expect (Section 2.5). This suggests the
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Figure 3.7: Parametric heating resonances of Cs atom in 976 nm tweezer.
Loss of Cs atom is plotted as a function of half the trap depth modulation fre-
quency. Thus, the trap frequencies can be read off directly from the loss resonances.
The data are fitted to the sum of two Lorentzians, centered at 5 kHz (axial trap
frequency) and 46 kHz (radial trap frequency). A resonance at ∼ 20 kHz is the
subharmonic of the radial trap frequency.

presence of aberrations.

3.5.2 Correcting Astigmatism

In this Subsection, we identify and fix two sources of astigmatism which are responsible

for the small ratio of axial to radial trap frequencies. The first is due to k−vector filtering

of the AOD, and the second is due to tilt of the objective.

The AOD filters transverse k−vectors; only a small range of transverse k−vectors sat-

isfy the Bragg condition and are diffracted into the first order beam (Figure 3.8A). Since

only the horizontal (“H”) axis experiences this filtering, the resulting tweezer trap is astig-
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Figure 3.8: AOD-induced astigmatism. (A) Origin of astigmatism. The
AOD diffracts the beam in the “H” but not the “V” axis. This leads to filtering of
transverse k−vectors only in the “H” axis. As a result, the beam is more divergent
along “V”. (B) Correcting the astigmatism. We replace the objective with a
fD = 1 m lens LD to magnify the astigmatism for diagnostic purposes. We can shift
the focus by placing a cylindrical lens Lc a distance dc from L1. The cylindrical
lens only acts along one axis of the beam. (C) Calculated focal shift vs. dc. Lc

“pulls” the focus toward LD by an amount depending on dc. A focal shift of zero
corresponds to the case with no cylindrical lens Lc, or when dc = f1. (D) Calcu-
lated beam waist vs. dc. Smallest waist requires dc < f1. (E) Measured beam
waist along the optic axis z. Before correcting with the cylindrical lens Lc. The
beam’s two principal axes focus at different points. (F) Same as (E), but after
inserting and optimizing cylindrical lens Lc. The astigmatism is fixed.
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matic and the axial trap frequency will be highly suppressed. The effect is exacerbated if

the beam waist at the AOD is smaller, since the beam will be more divergent.

Focusing the beam with a lens of focal length f will make the “H” and “V” axes focus

a distance

∆R′ ≡ R′
H −R′

V = f2(
1

RV
− 1

RH
)

apart, where RH and RV are the radii of curvature of the beam’s principal H and V

axes right before the lens, and R′
H and R′

V are the same but right after the lens. Thus, a

longer f magnifies the astigmatism.

Therefore, we replace the short focal length objective with a longer fD lens as shown in

Figure 3.8B. To fix the astigmatism, we also place a cylindrical lens Lc a distance dc from

the first telescope lens L1. This will result in a focal shift, also depicted schematically

(the direction shown corresponds to a positive focal shift).

Using ABCD matrices for Gaussian beam propagation (Appendix A.1.2), we calculate

the amount by which Lc “pulls” the focus closer to LD as a function of dc (Figure 3.8C).

We also calculate beam waist as a function of dc (Figure 3.8D), indicating that dc < f1 is

desired to minimize the smallest waist size.

Note, the calculations in Figures 3.8C and D were carried out for the 700 nm tweezer

with f1 = 60 mm, fc = 500 mm, f2 = 750 mm, and fD = 1 m, although the trends are

identical for the 976 nm tweezer.

54



In the experiment, we measure the beam waist along the two principal axes (”hori-

zontal” and ”vertical”) as a function of z (Figure 3.8E). The astigmatism is apparent,

suggesting that this is partially responsible for the small ratio of axial to radial trap fre-

quency measured in Subsection 3.5.1. Finally, we optimize both dc and the rotation angle

of Lc to remove the astigmatism. The measured waists along the horizontal and vertical

axes now coincide (Figure 3.8F).

As a check, we re-measure the trap frequencies using parametric heating and find {ωax
trap, ω

rad1
trap , ω

rad2
trap } =

2π × {11, 65, 100} kHz. The ratio of axial to radial trap frequencies is now 7.5, but the

40% difference between radial frequencies suggests there is yet another source of astigma-

tism.

In simulations, we found that the aberrations would be most sensitive to objective tilt.

As in Ref [92], we can finely adjust the objective tilt to maximize the axial trap frequen-

cies obtained from parametric heating. The trap frequencies as a function of the objective

tilt are shown in Figure 3.9. 0◦ indicates our starting point. After this optimization, the

trap frequencies are measured to be {ωax
trap, ω

rad1
trap , ω

rad2
trap } = 2π × {27, 140, 140} kHz, show-

ing degenerate radial trap frequencies and a ratio of radial to axial trap frequencies of 5.2.

Identical procedures were carried out for Na in the 700 nm tweezer.
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Figure 3.9: Measured trap frequencies vs. objective tilt. Trap frequencies
are measured with parametric heating. Horizontal alignment was performed first,
followed by vertical alignment. The dots indicate the starting point. Note that
when the axial trap frequency is maximized, the radial trap frequencies are also
maximized, and degenerate, as expected.
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3.6 Summary and Outlook

We have outlined procedures to characterize and optimize the objective alignment in situ.

At this point, we are able to load and image single atoms (Chapter 4). Furthermore, we

use actual measured trap frequencies to diagnose residual astigmatism and finely align the

objective. For a fixed optical input power, this allows us to achieve the highest possible

axial trapping frequencies –the ultimate limit on the experiment repetition rate (Chap-

ter 5).

57



Chapter 4

Light Shifts in Single Atom

Loading and Imaging

4.1 Introduction

Ignoring off-resonant scattering, the tweezer provides a conservative potential for the

atom via the AC stark shift. Therefore, loading atoms into the tweezer requires dissipa-

tion by scattering MOT or PGC photons (the so-called “resonant” beams). In the un-

saturated regime, the atom spends most of its time in the ground state and the tweezer

potential is dominated by the ground state AC stark shift.

Crucially, however, the excited state polarizability of Na results in severe light shifts

at the center of the tweezer. As a result, the number of photons scattered from the reso-

nant beams, and hence the dissipation, is suppressed, preventing loading altogether. This
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Chapter presents our investigative work into the role of light shifts during loading and

imaging of single atoms. We eliminate these deleterious light shifts for Na through fast

(1 − 3 MHz) modulation of the tweezer and resonant light beams. Our findings and tech-

niques should be applicable to any other laser-coolable and trappable atom or molecule.

4.2 Loading and Imaging of Cs

Loading and imaging of single atoms was first reported in Rb [60], wherein a tweezer was

loaded directly from a MOT and single atoms were observed hopping in and out of the

trapping volume. Because of the tight confinement of the diffraction-limited tweezer, light

assisted collisions between pairs of atoms ensured that only 0 or 1 atom remains in the

trap.

Due to its favorable properties (low recoil temperature, similar ground- and excited-

state polarizability for our tweezer wavelength), loading of Cs into tweezers of wavelengths

ranging from 936 nm to 980 nm could be demonstrated similarly straightforwardly. It

was important to use a MOT of sufficiently low density ∼ 108/cm3 that discrete atom

loading/ loss events could be observed, and a sufficiently high (∼ 10× the MOT temper-

ature) and stable trap depth that the atom could be cooled into the trap before being

stochastically heated out.1 Incidentally, this factor of 10 is why, even when combining
1Even when Teq < U0, the atom will eventually escape the tweezer; there is a finite fraction

of the Boltzmann distribution with temperature Teq that is above U0, and as the atom scatters
photons and samples the distribution it will eventually reach an energy that is above U0 and is
therefore no longer trapped. Numerical estimates show that U0 ≈ 10 × Tdopp is generally sufficient
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1 µm

Figure 4.1: Histogram of fluorescence counts from images of a single Cs
atom. The bimodal distribution shows clear separation between zero- and one-
atom peaks. Red dashed line indicates the threshold that is used to determine the
presence of an atom. Inset: Single-shot image of a single Cs atom. Dashed
box indicates region of interest for integrating photoelectron counts. White bar is
shown for scale.

two species, the 976 nm tweezer traps only Cs atoms but not Na atoms: due to the 5×

higher polarizability of Cs than Na [93], we can ensure that the 976 nm tweezer provides

sufficient trap depth only for loading Cs.

After loading the atom into the tweezer, the MOT cloud is allowed to disperse by turn-

ing off beams and magnetic fields, so that the atom can be imaged against a low back-

ground. The atom is imaged using the |F = 4,mF = 4⟩ → |F ′ = 5,mF = 5⟩ cycling

transition causing it to fluoresce. Fluorescence counts collected in a ROI on the camera

are integrated to determine if there is an atom or not. For judicious choice of imaging

detuning and duration, we can achieve good separation of the zero and one-atom peaks.

The presence of an atom is determined by imposing a threshold on the counts as shown in

to scatter the 103-104 photons needed for high-fidelity imaging with a single shot.
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Figure 4.2.

The detuning was made as close to resonance as possible without heating the atom

out prematurely so as to maximize the fluorescence counts in a short imaging time (thus

minimizing the background counts). The time is set as short as possible while still main-

taining good separation of the two peaks. Poor peak separation usually indicates large

detuning or short imaging time.

We found that there was an optimal trap depth for obtaining stable single atom load-

ing. Therefore we stabilize the tweezer intensity by mixing a control voltage with the RF

drive for an AOM. Too deep and the light shift at the center of the trap becomes too se-

vere to image and the atom; too shallow and atom is quickly boiled out of trap before

sufficient photons can be collected. In our case, we measured an ideal loading trap depth

of 0.6 mK, using the tweezer-induced light shift of the F = 4 → F ′ = 5 transition on the

Cs D2 line.

4.3 Loading and Imaging of Na

The situation for Na is much less straightforward and requires a more detailed discussion

of light shifts during loading and imaging.

Since the polarizabilities of the ground and excited states are not perfectly matched,

the atomic transitions will be shifted relative to their value in free space by a light shift [94].

This gives rise to a number of undesirable effects when scattering near-resonant photons,
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such as fluctuating dipole force heating [95, 96], where the atom experiences jumps in

the gradient of the trapping potential as it cycles between the ground and excited state,

inhibition of cooling due to the breakdown of hyperfine coupling [97, 98], and spatially

varying detuning and scattering rate. Because cooling is required for loading and imaging,

these effects can interfere with successful operation of the tweezer. Therefore, the success-

ful loading of a wide variety of atomic species, each with an associated level structure, is

made challenging by the effects of light shifts.

Due to the many electronic states in atoms, the polarizability of a given excited state,

αe, can be either positive or negative independent of the ground state polarizability, αg [99]

(Figure 4.2a). We define the wavelength-dependent ratio of polarizabilities as β ≡ αe/αg.

In the special case when β = 1, a “magic” wavelength [100, 101], the tweezer shifts the

ground and excited state by equal amounts, and the atom experiences no light shifts.

In Figure 4.2, we calculate light shifts for Cs and Na (and Rb for comparison) in the

presence of a red-detuned tweezer of depth 10 Tdopp ∼ 1 − 3 mK, where Tdopp is the

Doppler temperature, for a range of trapping wavelengths. For Cs atoms in the range of

∼ 930 − 970 nm, the light shifts are small, and are near zero (β = 1) at 935 nm. For Na

atoms over a large range of experimentally convenient wavelengths (630 nm ∼ 1064 nm),

β < 0. Combined with the higher Doppler temperature of Na, this results in a large light

shift that reduces the photon scattering rate and prevents the cooling that is required

to capture the atom. Furthermore, the light shift is comparable to the excited state hy-

perfine splitting of ≈ 60 MHz and inhibits sub-Doppler cooling due to the breakdown of
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Figure 4.2: Light shifts in optical dipole traps. (a) An illustration of light shifts in
a trap with waist wtrap for ground (blue) and different excited state potentials (red)
in terms of the excited/ground polarizability ratio β = αe/αg. For β < 1 (β > 1)
the atom will see resonant light of wavelength λres become red-shifted (blue-shifted)
upon entering the trap. (b) β for Na and Cs (Rb is also plotted for comparison).
We plot only the polarizability for the mj = 3/2 manifold [99]. The wavelengths
are plotted in reference to the D1 transitions for Na, Rb, and Cs which are 590 nm,
795 nm, and 895 nm respectively. (c) A comparison of light shifts on the cycling
transition for Na, Rb, and Cs atoms, following [99]. The trap depth is set to be
10 TDoppler for the ground state of each atom. Transition light shift δls is defined
as the change in the transition frequency relative to the case in the absence of the
trap; a positive shift means that the energy splitting between the ground and ex-
cited states increases (e.g. β = −1). The light shifts for Na are large enough that
hyperfine breakdown has already set in. 63



hyperfine coupling [97, 98].

Finally, attempting to load the atom from a MOT, where the excited-state fraction is

typically ∼ 25%, an anti-trapped excited state will reduce the average trap depth, there-

fore requiring higher intensity and resulting in even larger light shifts and fluctuating

dipole forces. The large initial temperature of Na, resulting from its high recoil temper-

ature, necessitates an even deeper trap for loading, which exacerbates the problem.

4.4 Trap Modulation

To circumvent issues related to loading, heating, and imaging that result from light shifts,

we alternate the trapping and cooling light such that they are never on at the same time.

Specifically, we modulate the intensities of the tweezer and resonant light as square waves

with frequencies between 1 and 3 MHz. The fast modulation technique works well as

long as the trap modulation frequency fmod is much greater than twice the trap frequen-

cies, so the atom does not suffer from parametric heating [86], yet still experiences a

time-averaged trap given by the average intensity. In addition we require fmod . γ/2π,

where γ is the natural linewidth, so that the atom will have enough time to decay into

the ground state before the trapping light is switched back on. A similar technique has

been used in the past for light shift-free imaging of optically trapped atoms [102, 103].

The modulation is realized by using the first order diffracted beam from an acoustic-

optical modulator driven by an 80 MHz sine wave mixed with the modulating square
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1 µm

Figure 4.3: Histogram of fluorescence counts from images of a single Na
atom. The bimodal distribution shows clear separation between zero- and one-
atom peaks. Red dashed line indicates the threshold that is used to determine the
presence of an atom. Inset: Single-shot image of a single Na atom. Dashed
box indicates region of interest for integrating photoelectron counts. White bar is
shown for scale.

wave. The resonant beams have 50% duty cycle 2, and the tweezer has 30-40% duty cy-

cle to minimize overlap with the resonant light. With this technique, single atoms were

successfully loaded into a tweezer from a MOT or an optical molasses (T ≈ 10 − 30 µK).

An image of a single Na atom and a histogram of photon counts from repeated loading

attempts using the modulation technique is shown in Figure 4.4. We note that, in the

absence of the modulation technique, we were not able to observe loading of a single Na

atom from a MOT or molasses into a diffraction-limited tweezer3 after varying a wide

range of parameters including tweezer depth, wavelength, MOT cooling power, repump
2We find that the resonant light can be modulated at all times and still yield a dense MOT

with temperature . 2Tdopp, and that polarization gradient cooling with modulated beams yields
temperatures similar to those achieved with unmodulated (CW) beams. The lifetime of the single
atom in the tweezer is ≈ 5 seconds for both modulated and CW tweezers.

3We were able to load into larger tweezers with waist > 1 micron with an unmodulated tweezer
and MOT beams, though the loading was only a few percent efficient.
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Figure 4.4: Single Na atom loading performance for varying relative phase between
MOT and tweezer modulated beams. When the resonant (MOT) and tweezer
light overlap, light shifts prevent loading and imaging. The data shown here is
for 3 MHz modulation with 50% duty cycle for the resonant light and 30% for the
tweezer light intensity, respectively. The curve is to guide the eye. (Inset) Timing
sequences of resonant and tweezer light at phase delays of 180◦ and 211◦ (optimum,
corresponding to ∼ 30 ns).

power, detuning, and magnetic field gradient.

4.5 Modulation Phase

To illustrate the robustness of fast modulation and the detrimental effects of light shifts,

we vary the relative phase of the resonant light and tweezer modulation and measure the

probability of loading an atom in Figure 4.4. When the tweezer and resonant light are not

on at the same time, the atoms see no light shift but are still Doppler cooled, and we can
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Figure 4.5: Scattered photons (assuming 4% detection efficiency) vs. imaging de-
tuning for single Cs atoms, with various combinations of modulated (Mod) vs.
unmodulated (CW), 0.6 mK and 1.2 mK tweezer depths, and 970 nm or 935 nm
tweezer wavelength. The modulated data means that there is effectively no light
shift. The MOT detuning (for single atom loading experiments) is indicated by
the vertical dashed line at -7 MHz. 0 MHz corresponds to the free-space atomic
resonance. The qualitative line shape is explained in the main text.

reliably load the tweezer. On the other hand, as the tweezer and resonant light begin to

overlap in time, the light shifts inhibit photon scattering and the loading suffers. We find

that the center of the loading curve is not when the resonant light and tweezer are exactly

out of phase (180◦), but when the tweezer turn-on trails resonant light turn-off by ∼ 30

ns, corresponding to the excited-state lifetime (see inset of Figure 4.4).
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4.6 Photons Scattered During Loading and Imaging

Now we turn to studying the role of light shifts in loading and imaging. Loading relies

on the atom scattering many photons while traversing the trapping volume in order to

remove enough energy to leave it trapped, while imaging relies on collecting as many pho-

tons from the atom as possible. Therefore, we can use number of photons scattered as a

proxy for loading/ imaging performance.

Figure 4.5 shows photons scattered as a function of detuning δ (relative to the atom in

free space) for a single Cs atom in a tweezer with an imaging duration of 50 ms and an

intensity of 0.3 mW/cm2 ≈ 0.1Isat. While illuminated with near-resonant light, the atom

scatters photons at a rate that depends on the detuning from the atomic resonance [104],

and experiences recoil heating due to spontaneous emission. Applying the modulation

technique to imaging single atoms gives a reference line shape that is free of light shifts.

For δ & −γ/2, no effective cooling is present and therefore only a small number of pho-

tons can be scattered before the atom is heated out of the tweezer4. However, if the near-

resonant light is red-detuned on the order of δ . −γ/2, then Doppler and sub-Doppler

cooling can keep the atom cold while it scatters photons. We find the equilibrium temper-

ature Teq is typically around 1/4 − 1/3 of Tdopp (with either CW or modulated beams),

which is well below the U0 ≈ 1 mK tweezer depths used here. As the detuning becomes
4With no cooling, the atom would scatter typically on the order of 100 photons before being

heated out of the ≈ 1 mK tweezer
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more red, the number of photons scattered is decreased due to the finite imaging time. A

numerical model of the line shape is given in Appendix B.

To quantify and illuminate the roles of different heating and cooling effects due to

light shifts, we further combine measurements that introduce a controlled amount of light

shifts to the Cs atom by tuning the tweezer wavelengths and depths without modulation.

When a light shift δls is present, the atomic resonance shifts accordingly. In Figure 4.5,

the peaks of the 970 nm CW tweezers for two depths track the δls shift while the scatter-

ing line shapes qualitatively retain the same asymmetry - cooling on the red side (left) of

the peak and heating on the blue side (right) of the peak. Furthermore, the peak num-

ber of photon scatters reduces as the light shifts increase due to fluctuating dipole force

heating and inhomogeneous detuning, that is, the fact that the atom will see a range of

detunings as it samples different trap depths. For β = 1 (magic wavelength at 935 nm),

the peak photon number is similar to the no light shift case. The residual shift of the 935

nm curve is likely due the fact that the magic wavelength is not for all hyperfine levels.

As mentioned earlier, the scattering line shapes in Figure 4.5 not only provide informa-

tion about single atom imaging, but also crucially connect to single atom loading, since

the conservative tweezer potential requires cooling in order to trap an atom. A numer-

ical estimate suggests that of the order 100 photons are required to cool the atom into

the trap. During single atom loading, the cooling provided by the resonant light has a de-

tuning that is constrained relative to the free space value ( −7 MHz for Cs in our experi-

ment) since the MOT has a constant detuning. This detuning can be adjusted to match
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Figure 4.6: Photons scattered and loading probability for various CW tweezer
depths. Both quantities require some minimum trap depth to allow sufficient pho-
tons to be scattered for detection. The number of photons scattered decreases with
increasing depth because light shifts reduce the scattering rate while the imag-
ing time is kept fixed. However, the loading fraction remains large as long as the
scattering rate is large enough to cool the atom into the conservative trap.

the light shift, but is limited to a finite range for reliable MOT loading (shaded bar in

Figure 4.5). The regimes where β > 1 and β < 1 present different challenges to atom

loading. For β > 1, the atom will see the resonant beams become shifted to the blue upon

entering the tweezer (δls < 0). If β is large enough such that |δls|& |δMOT |, this will result

in significant Doppler heating, and the atom cannot be efficiently loaded directly from a

MOT. We demonstrate this with Cs in a 922 nm tweezer, where β ≈ 2; at this wavelength

we were not able to load any single atoms using the conventional CW loading method,

but achieved robust loading (∼50% success rate) with fast modulation due to the effective

elimination of light shifts.

On the other hand, if β < 1, the atom will see the resonant light become shifted to the
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red in the tweezer (δls > 0). As long as this shift is not too large, Doppler cooling will

continue and the atom can be loaded and imaged. However, if the light shift is too large,

the atom may not scatter enough photons to become deeply trapped. Na atoms with a

700 nm tweezer (β between −1 and −2 depending on hyperfine level) falls into this cate-

gory as discussed in Section 4.3. Here, we demonstrate the breakdown of single Cs atom

loading into a 970 nm tweezer (β between 0 and 0.5 depending on hyperfine level) as the

trap depth (as well as the light shift) increases (Figure 4.6). We also measure how many

photons can be scattered at various corresponding trap depths. To eliminate variability

in loading for the scattering rate measurement, we load single atoms under a fixed trap

depth (≈ 1 mK) and ramp the tweezer to various depths for imaging. Imaging intensity

and duration are kept fixed. In Figure 4.6, we see that as the tweezer becomes deeper, the

scattering rate is reduced due to the light shift that increases the effective detuning of the

imaging light. Similarly, resonant light becomes increasingly detuned during the loading

phase as the atom is cooled into the tweezer and sees an increasing light shift. For deep

enough tweezers, the light shift increases so quickly that the scattering rate is turned

off before the atom is effectively trapped. Because fewer photons are needed to cool (of

the order 100) compared to the number needed for high-fidelity images (of the order 103-

104), the number of photons scattered falls more quickly than the loading rate as the trap

depth is increased.
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4.7 Summary and Outlook

In conclusion, we present an experimental investigation into the effects of light shifts in

loading and imaging single atoms in optical tweezers. We demonstrate a general tech-

nique to eliminate light shifts and reliably load both single Na and Cs atoms. The tech-

nique should be applicable to any other atomic or molecular species that can be optically

trapped and cooled.

We now proceed to cool the atoms to their quantum ground state of motion.
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Chapter 5

Raman Sideband Cooling

5.1 Introduction

Raman sideband cooling (RSC) operates in the resolved sideband regime, where the linewidth

of the cooling transition is less than the trap frequency [68–70]. This allows selective

addressing of specific motional state-changing (“sideband”) transitions. Resolving side-

band transitions from each other and from the motional state-preserving carrier transition

depends on our tight tweezer confinement which yields trapping frequencies of ∼ 10’s-

100’s kHz. Moreover, the Raman transition connects electronic ground hyperfine states

with long natural lifetimes that do not contribute to the two-photon linewidth.

Another feature of RSC is that it makes efficient use of spontaneously emitted pho-

tons: ideally, spontaneous emission will only occur if the atom has successfully undergone

an energy-removing Raman transition. This makes it an ideal cooling scheme for species
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with a low “photon budget”, such as molecules, which lack closed cycling transitions (al-

though this is not necessary for cooling of Cs!). Finally, laser-cooling single atoms in sep-

arate tweezers avoids photon re-scattering that tends to limit phase-space density in bulk

atomic vapors [105, 106].

Using standard polarization gradient cooling (PGC), we can already initialize single

Cs or Na atoms to temperatures of ∼ 5 µK and 40 µK, respectively, measured using re-

lease and recapture for Cs (Appendix C.2) and adiabatic lowering for Na [107]. This cor-

responds to a mean of tens of motional quanta. From this starting point, we demonstrate

RSC of a single Cs atom to the 3D ground state of motion in an optical tweezer with 96%

probability in approximately 100 ms. To our knowledge, we report the highest 3D ground-

state probability for single atoms in tweezers to date.

In this Chapter, we begin with a discussion of Cs RSC. We give an overview of the

pulsed RSC scheme; describe the laser system for driving Raman transitions; detail the

RSC parameters and sequence; and finally present results.

5.2 Theory of Driving Raman Transitions

The theory for driving Raman transitions is described in Ref. [92]. Here we summarize

the main results that we will make use of later. We consider driving the multi-level atom

shown in Figure 5.1. For a resonant (two-photon detuning δ = 0) Raman transition be-

tween two ground hyperfine levels |s⟩ and |f⟩, through a manifold of intermediate excited
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Figure 5.1: Two-photon Raman transition between states |s⟩ and |f⟩,
through excited intermediate states |ei⟩. Laser 1 and Laser 2 drive the Ra-
man transition. ∆i is the one-photon detuning from state |ei⟩. The two-photon
detuning δ is defined with respect to the Raman resonance.

states |ei⟩, the Raman Rabi rate is

ΩR =
1

2

∑
i

Ω(f, ei)Ω(s, ei)/∆i

where Ω(a, b) = ⟨a|d ·E|b⟩/h̄ is the Rabi frequency between states |a⟩ and |b⟩, and ∆i

is the one-photon detuning from |ei⟩.

In our system, the polarization is chosen so that only one excited state, specifically

|e⟩ = |4′,−4⟩, contributes, although this is not strictly necessary. In this case, we end up

with

Ω0
R =

1

2
Ω(f, e)Ω(s, e)/∆
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To account for the atom’s motion, we note that the Raman transition is also associated

with a momentum kick, ∆k, which imparts a phase ei∆k·x̂.

The 3D harmonic oscillator potential is separable, meaning we can considering motion

along each dimension independently. Using second quantized notation for the position

operator x̂ = x0(â + â†) where x0 =
√
h̄/(2mωtrap) is the harmonic oscillator length, we

have eiηR(â†+â) where ηR = ∆kx0 is the Lamb-Dicke parameter [108]. To see what this

entails, we can expand the exponential into terms of leading order in ηR:

eiηR(â+â†) ≈ (1̂+ iηR(â+ â†)) (5.2.1)

where 1̂ is the identity operator. Taking the inner product ⟨n|eiηR(â+â†)|n⟩ we see that

the next-leading order term is proportional to η2R(2n+ 1), where n = a†a. In the so-called

Lamb-Dicke regime, defined by

η2R(2n+ 1) << 1

we keep only these first three terms. We associate them, from left to right, with driving

motional carrier, lowering (∆n = −1), and raising (∆n = +1) transitions. Furthermore,

since â|n⟩ =
√
n|n− 1⟩ and â†|n⟩ =

√
n+ 1|n+ 1⟩, the respective Rabi frequencies are

{Ω∆n=0
R , Ω∆n=−1

R , Ω∆n=+1
R } ≈ Ω0

R{1, iηR
√
n, iηR

√
n+ 1} (5.2.2)

where the transition is driven from an initial motional state n.
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In general however, we have to worry about atoms occupying large-n states, and the

analytic expression for the Rabi frequency for driving a transition between states n and n′

is more appropriate [108]

Ωn′,n
R (Ω0

R) = Ω0
Re

−η2/2(n<! /n>! )
1/2η|n

′−n|L|n′−n|
n<

(η2) (5.2.3)

where n< and n> are the lesser and greater, respectively, of n′ and n, and Lα
n is the

generalized Laguerre polynomial

Lα
n(X) =

n∑
m=0

(−1)m

 n+ α

n−m

 Xm

m!
(5.2.4)

The full expressions for Raman transition strengths were necessary for calculating the

pulse times to use in Cs RSC (Section C.5).

5.3 Overview of pulsed RSC in Cs

The pulsed RSC sequence consists of two steps: a coherent two-photon Raman transi-

tion that connects two long-lived internal states while removing a motional quantum, and

an optical pumping (OP) step that re-initializes the internal state of the atom. The two

steps are repeated until the atom reaches the motional ground state.

In an alternative scheme called “continuous RSC”, the OP and Raman lasers are ap-

plied simultaneously. We did not resort to this technique because the pulsed scheme de-

couples the coherent and dissipative part, allowing them to be optimized independently.
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Furthermore, pulsed RSC can be faster because the Raman transition is not additionally

artificially broadened by OP.

The atom is initially prepared in |4,−4⟩ by OP, independently of the motional state

n. For this, we use σ−-polarized beams resonant with |4,−3⟩ → |4′,−4⟩ and |3,−3⟩ →

|4′,−4⟩ transitions, where the primes denote sub-levels of the 6P3/2 manifold of Cs. Dur-

ing the first step of RSC, a Raman π-pulse drives the transition |4,−4;n⟩ → |3,−3;n− 1⟩.

As mentioned above, the linewidth of this transition is dominated by the Raman Rabi

frequency.

Subsequently, OP pumps the atom to |4,−4;n − 1⟩ while preserving the motional state

with high probability. Thus, in each RSC cycle, n decreases on average. The process re-

peats until the atom reaches the dark state |4,−4; 0⟩, thereby deterministically preparing

the internal and the motional quantum state of the atom.

5.4 Driving Raman Transitions in Cs

In our Raman scheme for Cs, ηR = 0.17(0.14) for the axial(radial) direction1. The Ra-

man transition occurs between Cs ground-state hyperfine levels |F = 4,mF = −4;n⟩

and |3,−3;n − 1⟩, which are about 9.2 GHz apart (Figure 5.2A). Here, n is the motional

quantum number. The transition is driven by two phase-locked diode lasers, “Raman F3”

and “Raman F4” (Subsection 5.4.3), both red-detuned by ∆ = 2π × 44 GHz from the Cs
1Directly measured by taking the ratio of measured ground state sideband and carrier Rabi

frequencies.
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Figure 5.2: 3D motional control of a single Cs atom. (A) Level scheme for
Cs RSC. F3 and F4 Raman beams (with Rabi frequencies ΩF3 and ΩF4, respec-
tively) drive a coherent two-photon transition between adjacent motional states to
reduce motional energy. They are detuned by a one-photon detuning ∆ from the
6P3/2 excited state manifold. The two-photon detuning δ is defined relative to the
|4,−4;n⟩ → |3,−3;n⟩ transition frequency. Optical pumping (consisting of OP and
RP beams) provides the dissipation needed for cooling by pumping the atom back
into |4,−4⟩ at a rate ΓOP . (B) Directions of laser beams. The polarizations of
each beam are indicated by black lines with arrowheads. F3 and F4 Raman beams
contain σ− andπ polarizations, respectively, and OP and RP are σ−-polarized, as
desired. Switching Raman F4 beam directions allows us to cool the atom’s motion
in all 3 dimensions.
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D2 line at 852 nm, and with Rabi rates ΩF3 and ΩF4, respectively. To achieve motional

coupling, the laser beams can be arranged in any of the three configurations shown in Fig-

ure 5.2B which each yield substantial two-photon momentum transfer ∆k⃗i = k⃗F4(i) − k⃗F3

on the order of 2π/852 nm along a particular dimension. Specifically, using the Raman

F4(1) beam direction yields momentum transfer along axial and radial directions while

using Raman F4(2) or F4(3) yield momentum transfer along orthogonal radial directions.

At the same time, the energy difference associated with the hyperfine level and motional

state change is supplied by their relative detuning, δ. Since the atom is sufficiently cold

that it only samples the harmonic part of the trap, this resonance condition is maintained

for all relevant motional states, n.

For manipulating only the internal state without exciting any motion, we can use co-

propagating Raman F4 and Raman F3 beams (both propagating along the F3 direction

depicted in Figure 5.2B). This configuration imparts negligible two-photon momentum

∆k on the atom so that the coupling between different motional states is almost zero and

is useful for performing pure internal state manipulations.

A final practical consideration for driving Raman transitions is that we typically main-

tain ΩF3 = ΩF4. The spontaneous scattering rate scales as (Ω2
F3 + Ω2

F4)/∆
2, while the

Rabi frequency ΩR = ΩF3ΩF4/2∆. The spontaneous emission probability during a π-

pulse is therefore equal to their ratio PSE ∝
Ω2

F3+Ω2
F4

∆ΩF3ΩF4
, which is minimized for ΩF3 = ΩF4.

In practice, since the square of the Clebsch-Gordan coefficients differs by only 11%, we

attempt to enforce this condition by making the Raman F4 and F3 beam diameters and
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powers identical, and centering them on the atoms, as described in the next Subsection.

5.4.1 Aligning Raman and OP Beams to Tweezer

This section is concerned with how to center the Raman beams on the atoms so that the

atoms see the maximum intensity. The benefits are two-fold: The Rabi coupling will be

maximized for a given beam power, and the Rabi coupling will be insensitive to small

drifts of the Raman beam pointing direction.

To begin, we butt-couple resonant light (usually the optical pumping light) into the

Raman fiber (so as not to disturb the beam pointing on the apparatus side) and tune the

OP frequency to be resonant with the 4 → 5′ cycling transition on the Cs D2 line. For

coarse alignment, it is sufficient to load a MOT, and steer the Raman beam in 2 dimen-

sions using a single mirror until it displaces the MOT due to radiation pressure.

For finer alignment, we rely on resonantly kicking the Cs atom out of the tweezer. The

procedure is as follows: First, load a Cs atom into the tweezer. Second, lower the tweezer

depth, typically to < 100 µK. Third, pulse on the OP beam to kick out the atom. Lastly,

determine survival probability of the Cs atom. Raster scan the OP beam direction in 2D

to find where the survival probability is minimized.

The position of the beam at each point can be tracked on a beam profiler which moni-

tors the beam spot after exiting the glass cell. A key step before beginning any alignment

is to align the OP beam polarization to the axes of the polarization-maintaining fiber to
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suppress fluctuations of the σ+ component incident on the atoms; otherwise, the kick-out

probability will drift wildly throughout the course of alignment.

Using this procedure, we have also determined that the Raman beam waists are roughly

1 mm at the atom position.

5.4.2 Raman Beam Polarizations and Directions

The Raman scheme is shown in Figure 5.2A. The two beams, referred to as “Raman F3”

and “Raman F4”, are σ− and π-polarized, respectively.

The beam setup which achieves this is shown in Figure 5.2B. The beam directions are

chosen to provide not only the desired polarizations given B⃗OP , but also the desired net

momentum transfer ∆k along each of the three mutually orthogonal spatial axes. In the

experiment, as will be described in more detail in Section 5.5.2, the Raman F3 beam ori-

entation is kept constant while the Raman F4 beam orientation is cycled through 3 mutu-

ally orthogonal directions to provide cooling along all 3 dimensions.

The external field B⃗OP , parallel to the OP beam, is orthogonal to the effective mag-

netic field of the tweezer in order to suppress vector light shifts [69, 70].

5.4.3 9.2 GHz Phase Locking of Raman Lasers

To drive the Raman transition, we need two phase-coherent lasers with a frequency differ-

ence of 9.2 GHz, corresponding to the Cs ground state hyperfine splitting. While EOM’s
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can imprint sidebands at this modulation frequency, they will also introduce a third, un-

wanted frequency component that could lead to destructive interference when driving the

Raman transition [109]. Furthermore, tuning the frequency difference in order to obtain

Raman spectra will change the powers of the two beams and distort the spectrum.

Therefore, we instead opted to phase-lock two Vantage TLB-7100 ECDLs. Light from

both lasers is picked off and beat together on a fast ET-4000 photodetector (> 12.5 GHz

bandwidth). The beat signal is fed to a ADF4159 PLL evaluation board which acts as a

phase detector. We substitute the PLL’s reference oscillator with an external DDS whose

frequency can be tuned in the experimental sequence to scan the Raman two-photon de-

tuning. The PLL output control voltage is split into two paths. The “fast” path goes to

a variable gain amplifier (VCA824) and fed directly to the F3 Raman laser diode head

(50 kHz–100 MHz modulation bandwidth). The other “slow” path goes to a New Focus

LB1005 servo controller whose output is fed to the current modulation input at the F3

Raman laser controller (DC-1 MHz modulation bandwidth) to hold the DC control volt-

age to zero.

The beat note during phase lock is shown in Figure 5.3A, and the spectral purity of

the 9.2 GHz carrier characterizes the suppression of relative phase noise between the

two lasers. Phase noise leads to decoherence of the Rabi flopping when driving the two-

photon Raman transition. To visualize the severity of this decoherence, we directly mea-

sure the phase noise and numerically simulate its effect on atomic Rabi flopping (Ap-

pendix C.3). The simulated Rabi flopping curves (Figure 5.3B) for different measurement
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Figure 5.3: (A) Typical spectrum of 9.2 GHz Raman beatnote when the
Raman F3 and F4 lasers are phase locked. The servo bumps at & 1 MHz
are visible. (B) Top: Recorded time traces of phase error on the beatnote.
Different colors correspond to separate measurements. Bottom: Numerically
simulated Rabi flopping for each phase error measurement. Colors match
those in the top plot. The curves line up well for 10’s of µs, indicating high degree
of phase coherence.
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runs maintain phase coherence with each other over 10‘s of µs, indicating sufficient degree

of relative coherence for driving Raman transitions.

5.4.4 Temporal Pulse Profiles

In the experiment, we drive transitions with either square or Blackman temporal pulse

profiles.

For the square pulse, the Raman coupling ΩR = ΩF3ΩF4/2∆ is turned on abruptly

for some time tPulse, then shut off abruptly. For a given motional state, scanning tPulse

and monitoring F = 3 population yields the usual decaying sinusoidal Rabi flopping from

which one can easily extract Rabi and decoherence rates.

The Blackman pulse is given by:

ΩR(t) = Ω0
R(−

1

2
cos(2πt/tPulse) +

2

25
cos(4πt/tPulse) +

21

50
) (5.4.1)

In the experiment, we only shape the intensity of the Raman F4 beam. The Rabi flop-

ping obtained from scanning tPulse of the Blackman pulse is less straightforward to inter-

pret. However, the Blackman pulse is useful for obtaining well-resolved Raman spectra

because its Fourier transform has suppressed frequency sidelobes in comparison to those

of the square pulse. As will be described in Section 5.5.1, we also use the Blackman pulse

for cooling to maintain spectral resolution of the sideband transition from the carrier.

One potential downside with Blackman pulses is that they induce a time-dependent
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differential light shift of the Raman transition. If the laser frequencies are kept constant,

as is done in the experiment, the Rabi coupling changes during the pulse. Furthermore,

if the differential shift exceeds the spectral width of the driven Raman transition ∼ Ω0
R,

then the coupling will be significantly suppressed. The differential light shift is estimated

to be 0.5 × ΩR(t) (Appendix C.4). Most importantly, we have confirmed experimentally

that the Raman resonance positions do not depend on the Blackman pulse length.

5.5 Cs Raman Sideband Cooling

5.5.1 Considerations

The ground-state population achieved by RSC is ultimately limited by the recoil heating

due to optical pumping in each RSC cycle. This places bounds on the parameters that

will yield efficient cooling to the ground state: if ΩR is too large, then the sidebands will

not be well resolved from the carrier. Then, the Raman sideband transition carries signif-

icant probability of driving a carrier transition, which does not change the motional state

of the atom. Combined with the recoil heating from optical pumping, this leads to net

heating. This is of particular concern when cooling the axial direction due to the small

sideband separation. We minimize this effect by using Blackman pulses (Section 5.4.4).

On the other hand, we want to maximize ΩR to overcome decoherence mechanisms

such as magnetic field fluctuations, relative phase noise between the Raman F3 and F4
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lasers, or spontaneous scattering from the tweezer. The first two are primarily responsi-

ble for the measured T2 = 300µs coherence time of the Raman transition, meaning we

effectively cannot drive efficient Raman sideband π-pulses much longer than T2.

5.5.2 Sequence and Parameters

Each RSC pulse consists of a coherent Raman π−pulse with Blackman temporal profile

(Equation 5.4.1) for some duration tPulse, followed by an optical pumping step. A single

RSC cycle consists of 4 pulses, wherein we switch between driving the three Raman F4(i)

directions in the sequence {i = 3, 1, 2, 1} (Figure 5.2B) to cool the atomic motion along

all three axes of the tweezer. The entire RSC sequence for the Cs atom consists of 100

cycles with varying tPulse as described below, and lasts a total of ≈ 100 ms.

The starting temperature of 9.2 µK due to PGC, corresponding to a mean axial mo-

tional quantum number n̄a = 9, leads to non-negligible occupation of levels up to na ≈ 40.

Furthermore, the sideband Rabi frequencies depend on n via Equation 5.2.3 so that not

all motional states are efficiently addressed by any one particular tPulse. In particular,

any na for which Ωna,na−1
R = N2π/tPulse, where N is an integer, will be completely dark

and accumulate population after many such pulses.

Therefore, we “sweep” tPulse from π/Ωna+1,na

R = π/Ω40,39
R → π/Ω1,0

R over many cycles.

Furthermore, to overcome decoherence, which reduces the transfer fidelity of each pulse,

we repeat the sweep, but each time with a smaller starting na = {39, 29, 14, 9, 4}. A sim-
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Parameter Value
Starting Temperature 9.2 µK
Ω0

R (radial) 2π × 33 kHz
Ω0

R (axial) 2π × 7 kHz
B 8.6 G x̂
Utrap/kB 1.2 mK
ωrad
trap 2π × 145 kHz

ωax
trap 2π × 27 kHz

∆ 44 GHz
ηR, radial 0.14
ηR, axial 0.17
ΓOP 83 kHz
tOP 85µs

Table 5.1: Cs RSC parameters. Table of parameters used for experimental Cs
RSC.

ilar sequence is used for the radial axes but with the sweep beginning at lower nr due to

the lower starting entropy.

The choice of parameters for the axial direction is guided by a full master equation

simulation (details discussed in Appendix C.5). Even in the presence of decoherence, the

simulated cooling achieves 96.5% axial ground state population.

We summarize the experimental parameters used for complete 3D ground state RSC

in Table 5.1. Note that the smaller axial trap frequency necessitates a smaller Raman

coupling along that direction to maintain adequate sideband resolution during cooling.

We characterize two cooling experiments in Figure 5.4: (1) sub-optimal cooling was

used with slightly off-resonant δ ̸= ωtrap to reveal the location of the ∆n = −1 sidebands;

and (2) optimal cooling is obtained by setting δ = ωtrap, as determined by the sideband
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Figure 5.4: 3D sideband thermometry for Cs after RSC. Black, blue, and
red spectral peaks in the unshaded (shaded) region correspond to ∆n = +1(−1)
sidebands for the axial and two radial directions, respectively. Above: Spectra after
sub-optimal RSC reveals the ∆n = −1 sidebands, and hence the motional fre-
quencies. The 3D ground state population is P 3D

0 = 44(5)%. Below: Spectra after
cooling with optimized motional frequencies, yielding P 3D

0 ≥ 96(3)%.
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locations in (1).

5.5.3 Sideband Thermometry Results

To characterize the cooling performance, we use Raman sideband thermometry [67] to

measure average motional occupation n̄. Following RSC, we measure the ratio of ∆n =

−1 and ∆n = +1 Raman sideband transition heights. A successful transition changes

the state from |4,−4⟩ to |3,−3⟩ and is revealed by state detection (Section C.6). Us-

ing Appendix C.7.1, we obtain the average motional quantum number along each axis

{n̄a, n̄r1, n̄r2} = {0.03(3), 0.00(1), 0.01(1)}, and a corresponding ground state probability

along each axis. Their product gives the 3D ground state probability P 3D
0 ≥ 96(3)% for

optimal cooling.

The signal contrast in Fig 5.4 does not reach unity due to the ≈ 300 µs coherence time

for driving motional sideband transitions. Furthermore, different pulse durations were

used on the two radial axes, leading to a further difference in contrast. However, the side-

band ratios, used to extract the final ground state population, are unaffected.

5.5.4 Calibrations

After the experiment has been inactive for a while you occasionally need to re-calibrate

the π−pulse times. Fortunately, the tPulse sequence (Figure C.1B) should only scale by

a constant factor, so it is only necessary to calibrate one π−time per motional axis. The
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procedure for each axis for obtaining an initial estimate of the scaling factor from scratch

is the following:

1. Calculate ηR. ∆k can be obtained from the Raman F3 and F4 beam geometry and
ωtrap can be measured with parametric heating or Raman motional sidebands.

2. Measure the carrier π−time tcarrierπ using a square pulse. In the Lamb-Dicke regime,
this is independent of motional state (but this is not the case in general). In gen-
eral, equal-area Blackman pulse using the same peak ΩR as the square pulse is ob-
tained by scaling t→ 50

21 t.

3. Scale the entire tPulse sequence such that the last entry (i.e., for driving n = 1→ 0)
is tPulse =

50
21 t

carrier
π /ηR.

Once the atom is cold, you can continually refine the guess for the scaling factor by

measuring the ∆n = +1 sideband π-time using Blackman pulses and plugging it back

into the sequence until the value converges. In particular, Step 2 above ignores the time-

dependent light shift during the Blackman pulse and does not give the exact Blackman

π-time in practice.

The master equation simulations also showed that it is better to err on the side of

shorter tPulse. In fact, deliberately setting tPulse to be 90% of the true π−pulse lengths

seemed to improve ground-state cooling fidelity in the simulation.

Finally, one often needs to re-calibrate the δ for each axis. Again, this should be re-

peated with better and better cooling until the value converges, as the sideband location

tends to shift as the atom gets colder.
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5.6 Summary and Outlook

We have demonstrated RSC of a single Cs atom to its 3D ground state of motion in an

optical tweezer with 96 % probability. In addition, we have also performed RSC of a

single Na atom to its 3D ground state of motion with a probability of 93.5(7) in just

53 ms% [110]. The Cs ground state fraction may be further improved by increasing its

trap frequency, and therefore the upper bound on ΩR, to overcome heating and decoher-

ence. The Na ground state fraction may be improved by increasing the detuning of the

Raman beams and implementing better control of the magnetic field. Another improve-

ment could come from grey molasses cooling, to achieve a lower starting temperature be-

fore RSC [111].

Although Cs RSC data in this Chapter was taken for optical pumping of Cs to |4,−4⟩,

we have also shown that switching to the |4,+4⟩ yields the same ground-state fraction. In

Chapter 6 and on, we will need to prepare the Cs atoms in their stretched state |4,+4⟩,

so that the two-atom state Na+Cs will be a pure triplet state |2,+2; 4,+4⟩. This will be

important for suppressing spin-changing collisions and for interpreting molecular spectra.

One final consideration is that any wait time between the conclusion of RSC and molecule

formation needs to be minimized because the atoms can be heated by off-resonant scatter-

ing of tweezer photons. This occurs at a rate of ˙∆nax ≈ 0.3 Hz for Cs and a decreasing

3D ground state population of ∼ 0.9%/ms for Na. To avoid unnecessary waiting, in future
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experiments we perform the Na and Cs RSC sequences concurrently so that they end at

the same time. We have verified experimentally that RSC of one species does not affect

the atom of the other species.

We are now prepared to adiabatically combine the ground state-cooled atoms into a

single tweezer.
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Chapter 6

Adiabatic Merging of Single Na

and Cs Atoms

6.1 Introduction

This Chapter marks the final step for demonstrating full quantum state control of two

species of single atoms using optical tweezers. The ultracold molecular assembler tech-

nique relies on laser cooling of the atomic constituents and not the molecules themselves.

Therefore, it is critical for any steps following RSC to minimize heating.

Following 3D ground-state cooling of Na and Cs atoms in separate optical tweezers, we

transport the Cs atom in the 967 nm tweezer over a distance of several microns with min-

imal heating, and merge with the Na atom in the 700 nm tweezer. Subsequently, we show

that both atoms occupy the simultaneous motional ground state with 61(4)% probability.
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This realizes a sample of exactly two co-trapped atoms near the phase-space-density limit

of one.

While merging two separately confined identical ground-state atoms into one potential

well requires delicate quantum tunneling [112], merging different atomic species is more

straightforward.

The 700 nm tweezer attracts Na and repels Cs, while the 976 nm tweezer attracts Cs

5 times more strongly than Na [93]. As shown in Figure 6.1, translation of the 976 nm

beam to overlap the 700 nm beam, followed by gradual turn-off of the 700 nm beam

leaves the two atoms confined in the same tweezer trap, all within 10 ms.

In this Chapter, we describe a technical issue arising from the AOD resulting in para-

metric heating, the merge speed and trajectory adopted to circumvent this heating, ef-

fects of tweezer misalignment on final ground state fraction of the atoms, and finally a

numerical calculation of the minimum allowable merge time in the absence of technical

imperfections.

6.2 Trap Depth Oscillations

The speed at which we choose to transport a Cs atom in the 976 nm tweezer and subse-

quently merge it with the 700 nm tweezer is partly constrained by trap depth oscillations

whose frequency depends on the speed of the trap. At the right frequency, these oscil-

lations can result in parametric heating [86] of the atom. Here we discuss the origin of
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Figure 6.1: Radial cuts of optical potential experienced by Na and Cs dur-
ing the merge time sequence. Blue and orange lines show paths of the 976 nm
and 700 nm tweezers, respectively. The 976 nm tweezer containing Cs is translated
by 2.95 µm in 7.6 ms until it overlaps with the 700 nm tweezer. Then, the 700 nm
tweezer power is linearly ramped from 48 mW to 0 mW in 1.5 ms, followed by a
50 µs wait.
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shows a characteristic efficiency curve modulated by tiny fringes at the ∼ 1% level.
The latter are responsible for parametric heating of the Cs atom when the tweezer
position is scanned.

these oscillations.

We use an IntraAction A2D-563AHF3.11 which can deflect the beam in two dimensions

(for this demonstration we only use the horizontal direction). The electro-optic medium

forms an acoustic cavity. The amplitude of the intracavity field affects the AOD diffrac-

tion efficiency and depends on RF drive frequency. Therefore, as the RF drive frequency

is scanned to move the tweezer, the trap depth oscillates, in this case by approximately

1% (Figure 6.2). By scanning the tweezer position along the merge axis and measuring

the period of the intensity fringes, we measure the free spectral range of the acoustic

cavity to be FSR = 97.5 kHz. This is close to v/2L = 91 kHz where the length of the

acousto-optic crystal L ≈ 2 cm and the speed of sound is v = 3.63 mm/µs.
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Scanning the RF drive frequency by 9.44 MHz moves the 976 nm trap 2.95 µm in the

focal plane. Therefore, the acoustic cavity causes the trap depth to oscillate at a fre-

quency vmove 9.44 MHz /(FSR × 2.95 µm), where vmove is the speed of the scanning

tweezer. For the hybrid trajectory in Section 6.3, the trap depth oscillation during the

linear part is therefore 9.9 kHz.

6.3 Trajectory for merging two atoms into one tweezer

In addition to avoiding parametric heating, we also need to avoid heating due to jerk

(time-derivative of acceleration) at the endpoints of tweezer motion.

To address this, we use the so-called “minimum-jerk trajectory” [113] to transport Cs.

It is designed to translate the equilibrium point of a classical harmonic oscillator with

minimal motional excitation. The displacement x as a function of time t is given by

x(t) = xminjerk(t, d, T ) = d

(
10(

t

T
)3 − 15(

t

T
)4 + 6(

t

T
)5
)

where d is the total distance traveled and T is the total move time.

However, the minimum jerk trajectory has a variable moving speed that is problematic

for parametric heating. Because the tweezer is transported by sweeping the frequency of

the AOD RF drive in Figure 2.7, the trap depth oscillations arising from imperfections of

the AOD (Section 6.2) would sweep through a band of frequencies and be more likely to

excite a parametric heating resonance.

98



0. 0.2 0.4 0.6 0.8 1.
0.

0.2

0.4

0.6

0.8

1.

t/T

x/
d

α = 0

α = 0.95

α = 0.5

Figure 6.3: Hybrid trajectory for minimizing sources of heating. The trajec-
tory for three different values of the parameter α are shown: 0 (fully minimum jerk)
for Cs-only merge, 0.5, and 0.95 for the 2D scan of tweezer powers (see text).

Therefore, we devise a hybrid trajectory which uses constant velocity in the middle and

minimum jerk at the endpoints. Thus, the oscillation frequency is constant for the middle

part and the parameters can be more easily chosen to avoid parametric resonances. The

displacement as a function of time for the hybrid trajectory is given by

x(t) =



xminjerk(t, 2∆f, 2∆t) 0 ≤ t ≤ ∆t

15
4

∆f
2∆t ∆t < t < T −∆t

xminjerk(t− T + 2∆t, 2∆f, 2∆t) + αT 15
4

∆f
2∆t T −∆t < t ≤ T


(6.3.1)

where ∆f = d/(2 + 15
4

α
1−α) and ∆t = 1

2T (1 − α) are the distance covered and time

elapsed, respectively, of the minimum jerk trajectory portion, and α is the fraction of the

trajectory that is linear motion and can range from 0 (fully minimum jerk) to 1 (fully
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Figure 6.4: Raman sideband spectroscopy to characterize heating of Cs
due to atom transport. Top: A control experiment holding the atoms station-
ary for 18 ms. Bottom: After the round-trip merge sequence (the sequence shown
in Figure 6.1 followed by its time reverse). Dashed blue lines indicate expected
position of ∆n = −1 sidebands. The round-trip sequence causes minimal heating.
Inset: Coordinates of the transport direction compared to the Raman sideband
thermometry axes. Blue and orange circles represent 976 nm and 700 nm tweezers,
respectively, going into the page.

linear) (Figure 6.3).

6.4 Measuring Heating During Merge

First, we measure heating of Cs in the absence of Na following the merge. We use a min-

imum jerk trajectory (α = 0, d = 2.5 µm, T = 7.6 ms) followed by lowering for 1.5 ms,

wait for 50 µs, and the time reverse for detection. In total this sequence takes 18.3 ms.

Raman sideband thermometry on the separated tweezer shows minimal motional excita-
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tion of Cs ({∆n̄ax,∆n̄rad1} = {0.01(5), 0.00(2)}) compared to the case where it is merely

held in one place for 18 ms instead (Figure 6.4).

Next, we explore different trap powers for merging of Cs and Na atoms into one tweezer.

To prevent spin-changing collisions [114], we first prepare Na and Cs in |FNa,mNa
F ;FCs,mCs

F ⟩ =

|2, 2; 4, 4⟩ using optical pumping. Then, we merge the atoms using a hybrid trajectory d =

2.95 µm and α = 0.95 and measure the joint axial ground state fraction PNa
nax=0 × PCs

nax=0

as a function of beam powers (Figure 6.5). The change of d was due to drift of the tweez-

ers over time, and we used nonzero α to make the sequence more robust to parametric

heating. We identify three issues that can cause excess heating during the merge and re-

quire careful beam-power selection to overcome:

1. The 976 nm beam can make Na spill from the 700 nm tweezer and gain kinetic
energy. This limits the ratio P700nm/P976nm to be above 0.37, indicated by the right
shaded triangle in Figure 6.5A, and top panel in Figure 6.5B.

2. The 700 nm beam can dominate the 976 nm beam and repel Cs from the trap.
This limits the power ratio of the beams P700nm/P976nm to be below 2.7, indicated
by the left shaded triangle in Figure 6.5A, and bottom panel in Figure 6.5B.

3. Technical beam-steering imperfections cause a position-depending sinusoidal ripple
of the 976 nm tweezer intensity. For beam powers near P976nm = 10 mW at our
moving speed, this leads to parametric heating of the Cs axial mode. (see Subsec-
tion 6.2)

We choose powers of P976nm = 14.3 mW and P700nm = 7.1 mW (also used in Figure 6.4)

for all subsequent experiments. We characterize with 3D Raman sideband thermometry

that we have prepared two atoms in the same tweezer with a phase space density (PSD)

of PNa
0 × PCs

0 = 0.80(3)× 0.76(4) = 0.61(4).
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Figure 6.5: (A) Na+Cs joint axial ground state fraction after round-trip
merge sequence as a function of 700 nm and 976 nm tweezer powers. The
lower triangle corresponds to spilling of Na. Red square is an exemplary point in
this regime, whose radial potential is plotted in underlay in the correspondingly
marked panel in (B). Upper triangle indicates anti-trapping of Cs. Red circle is
an exemplary point, whose potential is plotted in underlay in the correspondingly
marked panel in (B). Dark purple stripe shows parametric heating resonance (due
to fringes in AOD diffraction efficiency; see text) during transport of Cs. Our usual
operating point is indicated by the star. (B) Fundamental heating mecha-
nisms during merge. Top: Darker potential curve is identical to corresponding
5.7 ms panel in Figure 6.1 for Na. Lighter potential curve shows the scenario for
tweezer powers leading to spilling of Na (marked by red square in panel (A)).
Bottom: Darker potential curve is identical to corresponding 8.55 ms panel in
Figure 6.1 for Cs. Lighter potential curve shows the scenario for tweezer powers
leading to anti-trapping of Cs (marked by red circle in panel (A)).
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In this experiment, lower optical pumping fidelity resulted in a higher initial Cs tem-

perature as compared to Sec. 5.5.3.

6.5 Effect of Tweezer Misalignment

The primary remaining source of heating is misalignment of the tweezers at t = T . There

are three orthogonal directions in which the tweezers could be misaligned: two radial, and

one axial. Since we can perform thermometry along the radial and axial axes indepen-

dently, we can determine in which direction the tweezers are misaligned. We have found,

for example, that Na axial temperature is particularly sensitive to axial alignment. The

relative axial positions tend to drift by ∼ 1 µm over the course of a month, and we can re-

duce n̄Na
ax from 0.2 to 0.05 by redoing the axial alignment (details below). Unfortunately,

since the radial thermometry axes are nearly 45◦ to the axes of motion of the tweezer, we

cannot determine which of the two radial axes are misaligned from thermometry alone. In

general, both axes have to be realigned if any radial misalignment is detected.

Aligning the tweezers along either radial direction is based on using the anti-trapping

potential of the 700 nm tweezer to eject Cs from the 976 nm tweezer. After loading only

Cs into the 976 nm tweezer, we abruptly turn on the 700 nm tweezer at different posi-

tions along the radial direction. The best alignment is achieved at the position for which

Cs is ejected with the highest probability.

To align the axial direction, we repeat the entire sequence described above, but at dif-
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ferent relative axial positions of the two tweezers. This can be accomplished by trans-

lating the second telescope lens of either the 976 nm or 700 nm tweezer, which changes

the divergence of that tweezer’s input beam before the objective (10 turns correspond to

∼ 1 µm axial displacement of the tweezer). As before, the best alignment is achieved at

the position for which Cs is ejected with the highest probability.

6.6 Theoretical Merge Speed Limit

Here we numerically calculate the expected heating for the radial and axial wavefunctions

of a single Na or Cs atom during the merge sequence. We first obtain the time-dependent

potentials experienced by the atom, then calculate the initial ground state wavefunction

using the Fourier Grid method (Appendix D.1). We numerically evolve the wavefunction

in time using the split-operator method [115] throughout the merge sequence. Finally, we

calculate the squared overlap of the final wavefunction with the ground state of the final

potential, giving the final ground state fraction. To find the fastest speed at which we can

merge single Na and Cs atoms tweezers into the same tweezer without heating, we repeat

this for different merge speeds and look for the onset of motional excitations of the final

wavefunction.

This calculation assumes no technical imperfections like tweezer misalignment or trap

depth oscillations and therefore represents the ultimate speed limit for transporting and

merging single atoms.
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6.6.1 Calculating Tweezer Potentials

Here we describe how to go from tweezer beam power and waist measured before the ob-

jective to the full 3D potential experienced by the Na and Cs atoms.

Although we can measure the tweezer input beam power and the transmission coef-

ficient for a collimated beam, it is not straightforward to convert to a trap depth using

the usual Gaussian beam theory. The beam which is incident on the glass cell is tightly

focused and there may be aberrations and angle-dependent transmission which would

change the focus from that predicted by simple Gaussian beam optics. We address this in

two ways: (1) the aberration is accounted for by introducing a phenomenological scaling

factor to the Rayleigh range; and (2) we fit an effective transmission coefficient for the

entire tweezer beam through all optical elements by matching the calculated radial and

axial trap frequencies to those obtained from measured Raman sidebands.

For (1), the tweezer waist is estimated from numerically propagating Gaussian input

beam (whose waist we can measure) using scalar Gaussian beam simulation, which in-

cludes the effect of the beam clipping on the objective aperture. The simulated electric

field intensities along the radial and axial directions are fitted independently to those of a

Gaussian beam. We find that doing so gives an input beam that is Gaussian except that

the Rayleigh range is scaled by 1.39, to account for aberrations.

For (2), for the 976 nm tweezer, with 15 mW measured before a final beam expanding

telescope and a 9 mm input waist before the objective, the radial and axial waists at the

105



tweezer focus are 0.844 µm and 4.875 µm (zR = 1.006 µm), respectively. We match the

calculated and measured radial and axial trapping frequencies of 125.7 kHz and 24.1 kHz

respectively, by inserting a transmission coefficient T = 0.27 by hand. This includes

transmission through optical elements: dichroics, objective, glass cell wall, and electrode

plate surfaces. Similarly, for the 700 nm tweezer, with a 6.6 mm input waist, 48 mW

power before the final beam expanding telescope, and T= 0.36, we obtain 530.5 kHz and

92.7 kHz radial and axial trap frequencies, in good agreement with measurements of Ra-

man sidebands.

Next, we convert intensity to potential energy via the following. Atomic polarizabilities

are taken from Table 2 of Ref. [93]. We use Equation 4 therein for the ground state polar-

izability αg. Ground state polarizability αg can be converted to trap depth U0 in Joules

via:

U0(αg(λ), P0) =
1

2
αg(λ)

I(P0)

c ϵ
2.48832× 10−8h (6.6.1)

where h is Planck’s constant, c is the speed of light, I(P0) = 2P0

πw2
0
is the peak beam

intensity, ϵ is the permittivity of free space, and P0 is total beam power. The potential for

a Gaussian beam in cylindrical coordinates is given by

U(r, z, αg, P0) = U0(αg, P0)
w2
0

w(z)
e−2r2/w(z)2

where w0 is the beam waist, w(z) = w0

√
1 + ( z

zR
)2, zR = πw2

0/λ is the Rayleigh range.
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6.6.2 Simulating Merging of Na and Cs

We simulate the effect of merging on the Na and Cs atoms separately, using optical po-

tentials determined by αCs
g (λ) or αNa

g (λ), respectively. Adding time dependence due to

the merge trajectory, the total potential for Cs will be of the form

UCs
tot (r, z, t) = U(r, z, αCs

g (700nm), P700nm(t))+U(r− x(t), z, αCs
g (976nm), P976nm) (6.6.2)

where the time dependences arise from moving the 976 nm tweezer (x(t) given by

Equation 6.3.1) and ramping down the 700 nm tweezer power (P700nm(t)) after the tweez-

ers are overlapped. For UNa
tot (r, z, t), the expression is identical to Equation 6.6.2, except

with αCs
g replaced with αNa

g .

To calculate the time evolution in one dimension, we set either z = 0 or r = 0 to obtain

a 1D radial or axial cut, respectively, of the total optical potential. The Hamiltonian is

given by H = T + V where T = (p)2/2m is the kinetic energy and V is the potential

energy. To simulate the time evolution of Cs along the radial direction, for example, we

would set V = V (r, t) = UCs
tot (r, 0, t). V is discretized in a real-space grid with N points

spaced ∆r = 1 nm apart, while T is discretized in momentum space with grid spacing

∆k = 2π/(N∆x), according to the Fourier Grid prescription (Appendix D.1). The error

introduced by replacing e−i(T+V )∆t/h̄ with e−iT∆t/h̄e−iV∆t/h̄ is [T,V ]

2h̄2 ∆t2 [115]. We have
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checked that the results of Figure 6.6 have converged for our values of ∆t and ∆x.

To begin, we assume the atom is in the ground state of the tweezer and initialize the

wavefunction ψ(r, 0, t0) accordingly. The initial and final trap eigenfunctions are calcu-

lated with the Fourier Grid method. Then, following the split-operator method, for each

time step ∆t = 0.1 µs, we calculate

ψ(r, ti+1) = Ẑe−iT∆t/h̄Ẑ†e−iV (r,ti)∆t/h̄ψ(r, ti) (6.6.3)

where ti+1 = ti + ∆t and Ẑ denotes the Fourier transform from momentum space to

real space. Application of Ẑ and Ẑ† allows us to treat the exponential factors as complex

numbers instead of entire matrices, at the expense of performing two fast Fourier trans-

forms. The ground state population at the end of the sequence is given by |⟨ψ(r, T )|ϕ0⟩|2,

where ϕ0 is the ground state of the final trap.

By varying the merge time T and calculating the wavefunction overlap with the mo-

tional ground state of the potential at t = T , we find that, technical imperfections aside,

we should be able to scan more than 10× faster (i.e., 2.95 µm in <1 ms) using a mini-

mum jerk trajectory and still remain in the ground state with >99.9% probability (see

Figure 6.6). Finally, we can apply scaling arguments to Figure 6.6 (Appendix D.3) to es-

tablish that any residual tilt of the tweezer does not lead to axial heating while moving

the tweezer in the radial direction.
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Figure 6.6: Minimum merge time. Numerical simulation of the motional exci-
tation as a function of merge time with fixed trap depth. The motional excitations
are negligible even for a merge time of < 1 ms, 10× faster than what was used in
the experiment.

6.7 Summary and outlook

We have demonstrated merging of single Cs and Na atoms into the same tweezer while

maintaining both atoms in the 3D motional ground state with 61 % probability, as well

as a careful study of heating mechanisms. We are now prepared to study collisions and

molecule formation of two atoms in a single tweezer.
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Chapter 7

Collisions and Photoassociation of

Single Atoms

7.1 Introduction

Building single molecules from two atoms requires understanding and suppressing loss

due to inelastic collisions between the two atoms and measuring the frequency of free-to-

bound transitions. Before coherently transferring atoms into molecules, we demonstrate

the underlying proof-of-principle technique with two “thermal” atoms (without applying

RSC) in a single tweezer. Even without full motional quantum state control, we can iso-

late one- and two-body loss processes by post-selecting on initial and final images of sin-

gle atoms (Figure 7.1) to distinguish among 4 initial and final possibilities: i) both atoms,

ii) no atoms, iii) only Cs, and iv) only Na occupy the tweezer.
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In the first experiment, we measure the two-body loss rate constant of Na+Cs. Previ-

ously, one- and two-body loss rates could be cleverly distilled from one another by resolv-

ing discrete changes in fluorescence level due to individual atoms entering or leaving a

high-gradient MOT [78] or optical dipole trap [79] containing just a few atoms. Determin-

istic preparation of exactly two atoms in an optical tweezer [14, 20–22] further eliminated

intra-species and three-body collisions from consideration altogether. In our version of

this technique, we shall use a tweezer containing at most one Na atom and one Cs atom.

In the second experiment, we photoassociate (PA) a pair of Na and Cs atoms to a sin-

gle NaCs∗ molecule (the ∗ indicates that it is electronically excited). When illuminating

the atoms with resonant PA light, an electronically excited state molecule may form (Fig-

ure 7.2), which spontaneously decays to the ground electronic state after ∼ 30 ns. The

final molecule does not scatter imaging light, causing molecule formation to also manifest

as two-body loss of both Na and Cs atoms. As before, the preparation of no more than

one Na and one Cs atom in the tweezer eliminates undesired reaction outcomes such as

three-body collisions. We use the two-body loss to observe previously unseen PA reso-

nances near the dissociation threshold. Finally, we assign the quantum states of the ob-

served PA resonances, allowing us to measure C6 coefficients of NaCs∗.
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Figure 7.1: Single-shot fluorescence images of single Na and Cs atoms. Cs
(top panels) and Na (bottom panels) are imaged sequentially in the same field of
view. The four possible cases are shown with their initial loading probabilities: no
atoms, a single Na atom, a single Cs atom, both Na and Cs atoms. Dashed blue
(Cs) and orange (Na) boxes indicate the region of interest for determining presence
of atoms. We find that in 33% of cases we load a single Na and a single Cs atom
side-by-side. In 18% of cases, no atoms are loaded, and the rest of the time either a
single Na or a Cs atom is loaded.
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Figure 7.2: Potential energy curves (PEC’s) of NaCs with Hund’s case
(a) labels [116]. Photoassociation (PA) light excites the ground state atoms to vi-
brational levels of the NaCs∗ excited molecular potentials, from which they mostly
decay to vibrationally excited electronic ground state molecules (squiggly line). The
long range asymptotes of the excited state potentials (dominated by van der Waals
interactions in the heteronuclear molecules) correspond to one of two cases: ground
state Na colliding with excited Cs in either the lower energy 6P1/2 (D1 line) or
higher energy 6P3/2 state (D2 line).
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7.2 Na+Cs Collisions

Isolated collisions between two atoms do not usually result in molecule formation due to

the need to simultaneously conserve momentum and energy1.

However, the atoms can change their hyperfine states after colliding, and the exother-

mic hyperfine-spin-changing collisions impart enough kinetic energy (≈ 100 mK) to the

atoms to eject them from the tweezer (≈ 1 mK depth) [78].

The data are shown in Figure 7.3. When Na and Cs are both present and prepared in

a mixture of hyperfine spin states, they are both rapidly lost τloss = 8(1)ms, where τloss

is the 1/e time of exponential decay. In contrast, if the atoms are both optically pumped

into the lowest energy hyperfine states, conservation of energy prevents the change of hy-

perfine states, and the atom lifetime increases to 0.63(1) s, similar to the calculate rate

of hyperfine-state relaxation τrel for Cs due to off-resonant scattering of the tweezer light

(Subsection 7.2.2). When only one atom is present, one-body loss due to collisions with

background gas limits the lifetime to 5 s.
1In the center of mass frame of two colliding atoms with no internal degrees of freedom, the

initial center of mass momentum Ptot = 0 and the total energy Etot = Kinit > 0. After the
collision, any resultant molecule would have to be stationary (Ptot = 0 and Kfinal = 0) and have
a non-zero binding energy (EB < 0). Therefore, a two-body collision alone cannot conserve en-
ergy such that the final molecule still has Etot > 0. However, radiative transitions can cause two
unbound, trapped atoms to form a molecule. The lifetimes associated with spontaneous and black-
body radiation induced stimulated transitions for bialkalis at a temperature of 300 K are typically
∼ 100 s for even the shortest-lived molecular bound states [23, 117] and orders of magnitude larger
for unbound trapped atom pairs since their dipole moment is drastically smaller.
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Figure 7.3: Collisions of Na and Cs. The hold time in the merged trap is var-
ied to measure the evolution of trap occupancy due to various collision mechanisms.
Post-selection on initial and final trap occupancies allows us to distinguish one-
and two-body processes. The fastest timescales are indicated next to the thick fit-
ted curves. The fits are explained in the supplementary material. Left: For both
atoms in a mixture of hyperfine states, the loss is dominated by rapid two-body
hyperfine-state-changing collision induced loss. Center: For both atoms in their
lowest hyperfine states, the loss is explained by two-body hyperfine state chang-
ing collisions that follow off-resonant scattering of trap light. In these two panels,
different markers denote the final trap occupancy. Right: One-body loss gives
background gas limited lifetime of about 5 s for both atoms. Here, we post-select
on empty final tweezers and markers denote initial trap occupancy.

115



Na
Cs

kNakCs

k2s

kCskNa

(1,1;L)

kNakCs

k2f

kCskNa

(1,1;M)

(0,1) (0,1)(1,0) (1,0)

(0,0) (0,0)

Figure 7.4: Model for 2-body collisions of Na and Cs. Four possible tweezer
occupation states exist: (1,1) both Cs and Na; (0,1) only Na; (1,0) only Cs; (0,0)
empty. Transitions between states are depicted by arrows with associated rates:
one-body Cs loss kCs, one-body Na loss kNa, slow two-body loss k2s, fast two-body
loss k2f . Single atom images allow us to directly monitor transitions between any
two of these states, thereby determining the rates k. (1,1) is further split into two
components: L, where both Na and Cs are in their lowest hyperfine states; and M,
any other combination of hyperfine states.

7.2.1 Modeling the collisions

To obtain the fits in Figure 7.3, we use the model depicted in Figure 7.4. This yields the

system of differential equations eq. 7.2.1 for the time dependence of each tweezer occupa-

tion state. The boundary conditions are the initial populations of each state (which can

be read off directly from the data) and the fact that all population should end up in (0,0)

at long times.
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Single atom images and post-selection allow us to isolate individual branches of Fig-

ure 7.4. The one-body processes ((1,0) to (0,0) and (0,1) to (0,0)) feature only a single

exponential decay and are fitted first to obtain 1/kCs = 5.3(1) s and 1/kNa = 5.1(3) s,

(Figure 7.3, Right). These rates are then fixed and the losses out of (1,1;L) are fitted to

obtain 1/k2s = 0.63(1) s (Figure 7.3, Center). Finally, this rate is fixed as well and the

losses out of (1,1;M) are fitted to obtain 1/k2f = 8(1)ms (Figure 7.3, Left).

d

dt



P00(t)
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P11;M (t)
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=


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



P00(t)

P01(t)

P10(t)

P11;L(t)

P11;M (t)


(7.2.1)

To obtain the loss rate constant, we calculate the “effective pair density” n2, defined as

the probability of finding a single Na and Cs atom per unit volume

n2 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

nCs(x, y, z)nNa(x, y, z)dxdy dz (7.2.2)

To obtain the individual atomic density distributions nNa(x, y, z) and nCs(x, y, z), we

note that thermal bosons at temperature T in a 3D harmonic potential have a density

profile given by

n(x, y, z) =
∏

i=x,y,z

1√
2πσi

exp(−i2/2σ2i )
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Here, σi =
√

kBT
m(ωi

trap)
2 , kB is Boltzmann’s constant, and ωi

trap/2π is the trap frequency

in the i-direction, measured via parametric heating (Subsection 3.5.1) to be (132, 123, 24)

kHz for Na and (150, 140, 28) kHz for Cs.

The temperature during these collision measurements was measured to be 90 µK and

42 µK for Cs and Na, respectively, using a release and recapture technique (Appendix C.2).

This yields n2 = 2.3× 1012 cm−3 and a loss rate constant β = 1
τlossn2

= 5× 10−11 cm3/s.

7.2.2 Hyperfine relaxation rate

Here we calculate τ−1
rel , the rate at which Cs atoms initially prepared in the F = 3 man-

ifold of 62S1/2 are pumped into F = 4 of 62S1/2 by off-resonant scattering of tweezer

photons.

The measurable quantity in our experiment is the fraction of Cs atoms pumped to

F = 4, since they subsequently undergo a hyperfine changing collision with the Na atom,

resulting in two-body loss as described in the previous section. The relaxation rate of the

atomic hyperfine populations F = 3 and F = 4 is given by [118]

τ−1
rel = γrel = γ3→4 + γ4→3 (7.2.3)

Where γF→F ′′ is the spontaneous transition rate for the Cs atom to go from F to F ′′,

and is obtained by summing the spontaneous transition rates between Zeeman levels
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γF,mF→F ′′,m′′
F
over final m′′

F levels, then averaging over initial mF levels:

γF→F ′′ =
1

2F + 1

F∑
mF=−F

F ′′∑
m′′

F=−F ′′

γF,mF→F ′′,m′′
F

(7.2.4)

In writing Equation 7.2.4, we assumed that the Cs atoms are initially isotropically

distributed among Zeeman sublevels since they are pumped in zero B field by the MOT

beams, which come from all directions.

γF,mF→F ′′,m′′
F
in turn is given by [118]

γF,mF→F ′′,m′′
F
=

3π2c2ω3
LI

2hµ4

∣∣∣∣∣α
(1/2)
F,mF→F ′′,m′′

F

∆1/2
+
α
(3/2)
F,mF→F ′′,m′′

F

∆3/2

∣∣∣∣∣
2

(7.2.5)

where ∆J ′ = ωL − ωJ ′ , and

αJ ′

F,mF→F ′′,m′′
F
=

ΓJ ′

ω3
J ′

∑
q,F ′,m′

F

⟨F ′′,m′′
F |µq|F ′,m′

F ⟩⟨F ′,m′
F |µ0|F,mF ⟩ (7.2.6)

The quantity
αJ′
F,mF→F ′′,m′′

F
∆J′

is the probability amplitude for the atom to make a tran-

sition from |F,mF ⟩ to the excited state |F ′,m′
F ⟩, and subsequently decay to |F ′′,m′′

F ⟩.

The sum runs over all |F ′,m′
F ⟩ states in the 62PJ ′ level in Cs and represents the fact that

the two-photon transition (absorption followed by spontaneous decay) does not select a

particular |F ′,m′
F ⟩ for the intermediate state. Rather, all possible paths sum coherently.

Here, µq are spherical components of the dipole operator µ, with mF = m′
F + q. We use

µ0 because the tweezer is π−polarized.

The matrix elements ⟨F,mF |µq|F ′,m′
F ⟩ can be written in terms of Wigner 3-j sym-
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bols [119]

⟨F,mF |µq|F ′,m′
F ⟩ = ⟨F ||µ||F ′⟩(−1)F ′−1+mF

√
2F + 1

 F ′ 1 F

m′
F q −mF

 (7.2.7)

The reduced matrix element ⟨F ||µ||F ′⟩ can be written in terms of a Wigner 6-j symbol

⟨F ||µ||F ′⟩ = ⟨J ||µ||J ′⟩(−1)F ′+J+1+I
√
(2F ′ + 1)(2J + 1)


J J ′ 1

F ′ F I

 (7.2.8)

The reduced matrix element ⟨J ||µ||J ′⟩ is given in Table 7 of Ref [119] for Cs (nuclear

spin I = 7/2, electronic spin S = 1/2, and J ′ = 1/2 or 3/2).

To compute Equation 7.2.5, we use ωL = 2πc/(976 nm) and ΓJ ′ and ωJ ′ from Ref. [119],

and we assume the Cs atom is sufficiently cold that it experiences the peak tweezer inten-

sity I = 2P0/(πw
2
0) with total power P0 = 7 mW and w0 = 0.8 µm. This is justified

below.

The temperature of the Cs atom was measured to be 90 µK using a release and recap-

ture technique (Appendix C.2). From parametric heating (Subsection 3.5.1), we measured

the trap frequencies to be {150, 140, 28} kHz. The average occupation number in three

dimensions is then {n̄r1, n̄r2, n̄a} = {12, 13, 66} using Equation C.7.1. The spatial wave-

function spread, given by ∆ri =
√

h̄
2mωi

trap
(2n̄i + 1) is therefore approximately 80 nm and

400 nm in the radial and axial directions, respectively. At these distances, the tweezer

potential U(r, z) ∝ (w0/w(z))
2 exp(−2r2/w(z)2) has only fallen to 98% of its peak value.
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Here, w(z) = w0

√
1 + (z/z′R)

2 and z′R ≡ 1.39πw2
0/λ (the 1.39 scaling factor accounts

for aberrations and the clipping due to the aperture size of the objective as described in

Subsection 6.6.1).

The total relaxation rate [118] is calculated to be γrel = (0.74 s)−1, in reasonable agree-

ment with our measured rate of two-body loss (0.63 s)−1 when both Na and Cs are ini-

tially pumped to their ground hyperfine states.

7.3 Near-Threshold Photoassociation

7.3.1 General Structure of Diatomic Molecules

First, we introduce the basic concepts and notation needed to discuss molecular spectra

of NaCs.

7.3.1.1 Energy Scales

The energy scales of a diatomic molecule are, in descending order [120]:

1. Electronic excitations, Eel ∼ 100 THz, similar to those of the constituent atoms. As
in atoms, they are derived from the Coulomb interaction between electrons and the
core.

2. Vibrational excitations, displacements of the relative positions of the nuclei. The
energy scales are given by

√
me/µ Eel ∼ 1 THz at the bottom of the well, where

µ = mNamCs
mNa+mCs

is the reduced mass.
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3. Rotations of the nuclei about their center of mass. The rotational spectrum is
BvN(N + 1) where Bv = h̄2/(2µR2

eq) ≈ h × 1 GHz, and Req ≈ 4 Å is the equi-
librium bond distance of NaCs in its rovibronic ground state.

4. Hyperfine structure inherited from the nuclear spin of the constituent atoms, and
their couplings to each other and/ or to molecular rotation.

7.3.1.2 Potential Energy Curves

In the Born Oppenheimer approximation, the coupling between vibration and electronic

degrees of freedom is ignored and the nuclear and electronic wavefunctions are treated

as separable. This is motivated by the large disparity in nuclear and electron masses,

which enables the electron clouds to adjust instantaneously to the rather sluggish nuclei.

Thus, the motion of nuclei can be thought of as being guided by a potential energy curve

(PEC), which is defined by the electronic energy eigenvalues at all internuclear separa-

tions. It is important to note that the PEC is not something which is physically observ-

able; rather, it is the total energy due to the collective effects of all the charges compris-

ing the molecule. Formally:

HBO = He + Tn (7.3.1)
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where

Tn = −
∑
A

h̄2

2MA
∇2

A (7.3.2)

is the kinetic energy of the nuclei, which move on an effective potential given by

He = −
∑
i

h̄2

2me
∇2

i +
e2

4πϵ0

(
−
∑
i,A

ZA

riA
+
∑
i>j

1

rij
+
∑
B>A

ZAZB

RAB

)
(7.3.3)

consisting of (from left to right) electron kinetic energies, electron-nucleus Coulomb

attraction, electron-electron Coulomb repulsion, and nucleus-nucleus Coulomb repulsion.

7.3.1.3 Angular Momentum Quantum Numbers

Atoms are spherically symmetric, so the electronic angular momenta (L, S, and J =

L + S) are conserved and serve as the good quantum numbers. In diatomic molecules,

an internal electric field along the internuclear axis breaks spherical symmetry in the

molecule-fixed frame and causes the various angular momentum vectors to precess. As

a result, it is their projections onto the internuclear axis (L→ Λ; S → Σ; J → Ω) that are

conserved.

As the vibrational state (and hence bond-length) varies, so too does the order in which

the angular momenta are coupled to each other vs. to the internuclear axis.

In NaCs, we only consider two such coupling cases. These so-called Hund’s cases are

bases in which it is most convenient to represent the molecule. In the following, we shall
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use n̂ to denote the unit vector along the internuclear axis.

Hund’s case (a). Deeply bound vibrational states with short bond lengths and a strong

internal electric field are best described by Hund’s case (a). The electric field is strong

enough to decouple L and S. Therefore, L first couples to n̂, yielding Λ. Then S couples

to n̂ via spin-orbit coupling to L, yielding Σ. The good quantum numbers are Λ, Σ, Ω =

|Λ + Σ|, and J = Ω + N . Σ ranges from -S,S+1,...,S such that Ω ranges from |Λ − S| to

Λ + S. The term symbols are

2S+1Λ±
Ω

The additional superscript ± refers to the “reflection symmetry” of the electronic wave-

function about an arbitrary plane containing the internuclear axis, and is only specified

for Λ = 0 states, whose parity-adapted eigenstates are non-degenerate.

Since there may be multiple electronic states with the same term symbol, they are also

preceded by a letter that labels the energetic ordering of the bottom of the associated po-

tential energy curve (Section 7.3.1.2). The lettering starts with X for the absolute ground

state, followed by A, B, C, etc. for potentials with the same spin multiplicity (e.g., sin-

glet) and a, b, c, etc. for the rest (e.g., triplet). Note the similarity of the Hund’s (a)

term symbols with those of atoms, 2S+1LJ . In addition, just as L = S, P,D, ... denote

L = 0, 1, 2, ..., in atoms, so too do Λ = Σ,Π,∆, ... denote Λ = 0, 1, 2, ... in molecules.

Hund’s case (c). Weakly bound molecules with long bond lengths have a weak internal
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electric field, and are best described by Hund’s case (c). The field is insufficient to decou-

ple L and S, so Ja = L+ S is still conserved, as in the case of free atoms. Ja then couples

to n̂ to give Ω. The term symbol is simply (Ω±), preceded by a number that labels the

energetic ordering of the associated potential well, where the ± is only specified for Ω = 0.

The good quantum numbers are Ja = L+ S, Ω, and J = Ω+N .

The term symbols each have an associated PEC. However, since the heirarchy of cou-

pling strengths depends on bond length, it follows that a given PEC is not necessarily

valid for all vibrational quantum numbers. When two PEC’s with the same Ω approach

each other, spin-orbit coupling may lead to an avoided crossing and mixing of the PEC’s.

This can lead to complications when assigning molecular spectra. For example, in Sub-

section 7.3.4, we must correlate the PEC defined in Hund’s case (a) with those defined in

Hund’s case (c) in order to properly correlate the spectroscopic lines we observed near the

dissociation threshold to previously observed, more deeply bound lines and to ab initio

PEC’s.

7.3.2 PA laser

The PA laser is a Photodigm DBR (PH852DBR240TS). The beam path on the appara-

tus side is shown in Figure 7.5. For PA scans, we modulate the laser diode current with a

3 kHz triangle wave to frequency broaden the laser spectrum by 200 MHz. The polariza-

tion is first “cleaned up” with a PBS, and then set to nearly horizontal with the use of a
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Tilted Glass 
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2D Steerable Mirror

Tweezer

Telescope

Lens
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Figure 7.5: Top view of beam layout for steering and focusing the PA
beam onto the atoms. After the fiber, the polarization is cleaned up with a PBS
and set to nearly horizontal (i.e., in the x-y plane) with waveplates. Expanding the
beam and adding a tilted glass plate (see text) in the beam path allow the beam
to be tightly focussed. A mirror with a piezoelectric actuator allows us to finely
overlap the PA beam with the tweezer focus. Repump beam is on during all spec-
troscopy measurements. (Inset) The coordinate system referred to in the text and
B-field vectors for optical pumping (B⃗OP ).
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HWP followed by QWP. In the presence of an applied B-field BOP, this ensures all polar-

ization components are present, and that we don’t miss any PA lines. The two waveplates

were intended to compensate for any birefringence in the optical path, although in prac-

tice we found that the HWP did not make a difference. The beam is expanded to 2.5 mm

waist to maximize the NA prior to focussing into the cell and achieve a tight 33 µm waist

at the focus. We also add a glass plate of similar thickness to the glass cell wall, tilted by

∼ 45◦ in the vertical direction, to compensate for the ∼ 45◦ angle of incidence (in the

horizontal direction) on the glass cell and suppress astigmatism. The beampath includes

a motorized kinematic mirror mount (New Focus U100-A with manual micrometer knobs

replaced with 8302 Picomotor Piezo Linear Actuators) to allow the beam to be remotely

steered in 2 dimensions with high precision, giving ∼ 100 nm resolution at the location of

the tweezer. Due to the tight focusing of the PA beam, it was critical to place a shutter

before fiber coupling to prevent even tiny amounts of stray PA light from leaking through

and prematurely kicking out the Cs atom.

The PA light could promote the Cs atom into the upper hyperfine level due to off-

resonant scattering, which would lead to spin-changing collisional loss. We counteract

this effect by simultaneously optically pumping Cs into the lower hyperfine level with a

separate “Repump” beam (Figure 7.5).
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7.3.3 Aligning the PA beam to the tweezer

To align the PA beam to the tweezer, we trap Cs in the tweezer and rely on resonant kick-

out by cycling PA photons on the |4, 4⟩ → |5′, 5′⟩ transition. We scan the PA beam in the

transverse plane using the steerable mirror and see where it kicks Cs out of the tweezer

most efficiently.

Cs is loaded into the tweezer and optically pumped to |4, 4⟩. The tweezer depth is adi-

abatically lowered to about 8 µK so that it barely traps Cs. Since the PA beam is so

tightly focused, we found that merely opening the PA shutter causes loss of the Cs atom

if the PA beam and tweezer are already well-aligned. To avoid this, we detune the free-

running PA laser 8 GHz below the |4, 4⟩ → |5′, 5′⟩ transition. Generally, the slow free-

running drift does not cause significant fluctuations in the kick-out probability over the

course of alignment, although for this chapter we additionally beat-lock the PA laser to

our Cs MOT repump laser (which is in turn locked to a Cs vapor reference cell).

We record the survival probability of Cs following 2 ms of illumination by 10 µW of

PA light, averaging for 200 shots at each position of the PA beam. The PA power can be

reduced in order to increase alignment precision; we achieve ∼ 1 µm. In this experiment

we did not align the position of the PA beam focus along the PA beam optic axis, relying

instead on placing the focusing lens f away from the atoms.
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Figure 7.6: Photoassociation Spectroscopy of NaCs∗. The probability of
single Na (orange), Cs (blue), and joint Na+Cs (red) atoms evolving to the “no
atoms” detection channel, as the PA light is detuned from the Cs D2 line disso-
ciation threshold at 351730 GHz. When both atoms are initially loaded into the
tweezer (lower panel), two-body loss resonances appear due to molecule formation.
As a validation of our method, we check that no loss resonances are observed when
only one atom is present (upper panel). The positions of the loss resonances are
fitted with the LB dispersion model in eq. 7.3.4 to identify three different potentials
and fit the respective C6 dispersion coefficients. The expected resonance positions
based on these fits are marked by vertical lines as indicated in the legend. Unas-
signed lines in the spectrum are likely due to rotational and hyperfine structure and
pre-dissociating potentials.

7.3.4 Measuring and Assigning PA Resonances

We scan the PA light from 30 to 250 GHz below the Cs atomic D2 line (6S1/2 - 6P3/2)

(Figure 7.6). The PA light intensity is approximately 3 kW/cm2 at the tweezer. We take

steps of 200 MHz with 100 ms pulse duration, and average over approximately 100 repeti-

tions at each data point. An absolute accuracy of 1 GHz is set by the wavemeter. Based
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on a temperature of 42 µK and 28 µK for Na and Cs, respectively, the effective pair den-

sity was n2 = 3× 1012 cm−3.

Two-body atom loss provides a robust signal for molecule formation. The false posi-

tive rate (due to both Na and Cs undergoing one-body loss within the 100 ms PA time

window) is only 1%. We use this signal to probe NaCs* vibrational levels near the dis-

sociation threshold, including resonances that have not been previously observed. The

bottom panel of Figure 7.6 shows these loss resonances as the frequency of the PA light is

scanned below the dissociation threshold. The top panel, by comparison, shows the cases

where only a Na or a Cs atom was loaded, but not both. In these cases, no molecule

should form and the loss probability is largely independent of PA detuning. However,

close to zero detuning, off-resonant scattering of the PA light from the Cs D2 transition

causes one-body loss of Cs.

Lines in the PA spectrum indicate detunings at which the PA light can promote the

Na+Cs atom pair to an electronically excited molecular state. Here, “assigning” a PA line

refers to determining the quantum numbers (angular momenta, vibrational, and reflection

symmetry) of the final molecular state. This entails figuring out which NaCs∗ PEC is

responsible for the observed lines and ensuring consistency with more deeply bound lines

which were previously observed and assigned.

To begin, we note that all of our PA lines lie in the long range, or dispersive, regime.

This regime describes internuclear separations larger than the Le Roy radius [121], be-

yond which the wavefunction overlap between two atoms is small enough that the ∼
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C6/r
6 van der Waals interaction dominates over the electron exchange interaction. In

NaCs∗, the calculated Le Roy radius is 13.5 Å, which means that the dispersive regime

holds for detunings from threshold of < 300 GHz [122]. In that case, the vibrational en-

ergies are well described by the Le Roy-Bernstein (LB) dispersion model [121] parameter-

ized by the C6 dispersion coefficient, given by

Ev′ = −
1

C
1/2
6

[
2h̄

(
2π

µ

)1/2 Γ(7/6)

Γ(2/3)
(v′ − v′0)

]3
, (7.3.4)

where v′ is the vibrational quantum number (v′ = −1 is the bound state just below the

dissociation threshold), v′0 is an offset between -1 and 0 and is another fit parameter, µ is

the reduced mass, and h̄ is the reduced Planck’s constant.

The significance of this is that all of our observed lines can be grouped into “vibra-

tional progressions” (series of lines belonging to the same PEC) simply by fitting their

energy spacings to Equation 7.3.4 and extracting a fitted C6 coefficient. C6 coefficients for

each Hund’s case (a) potential were determined from ab initio calculations and are com-

piled in Ref. [123], thereby allowing us to assign vibrational progressions to a Hund’s (a)

PEC.

However, our PA lines lie in the Hund’s case (c) coupling regime, meaning that we first

have to correlate PEC’s across Hund’s cases. To do this, we first re-plot the PEC’s from

Ref [116] which include spin-orbit coupling and are therefore valid in Hund’s case (c) (Fig-

ure 7.7). We then make use of the following observations to constrain the correlation of

PEC’s across Hund’s cases.
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Figure 7.7: Close detail of NaCs excited state manifold PEC’s. The energy
range plotted here corresponds to the thick red line on y-axis in Figure 7.2. Curves
with the same Ω (a good quantum number in Hund’s cases (a) and (c)) have iden-
tical colors and are labeled accordingly. The Hund’s case (a) term symbols are
labeled in black, and assigned by visual comparison with Figure 7.2. From this
plot, it is clear that A1Σ0+ , b3Π0−,1 correlate to Cs D1, while all the other curves
correlate to Cs D2.

Term Symbol S Σ Λ Ω = |Λ + Σ|
X1Σ 0 0 0 0+

a3Σ 1 -1, 0, 1 0 0−, 1
A1Σ 0 0 0 0+

b3Π 1 -1, 0, 1 1 0−, 0+, 1, 2
B1Π 0 0 1 1
c3Σ 1 -1, 0, 1 0 0−, 1

Table 7.1: Possible values of Ω for each Hund’s case (a) term symbol.
Comparison with Figure 7.7 establishes the terms which correlate to the Cs D2 line
(boldface type) and D1 line (regular type).
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1. Visual comparison of Hund’s case (a) PEC’s in Figure 7.2 with Hund’s case (c)
PEC’s in Figure 7.7

2. According to Table I of Ref. [116], 3(0−), 3(0+), 3(1), 4(1), and 1(2) correlate with
the Cs D2 line, while all others correlate with the Cs D1 line.

3. Ω, which labels the PEC’s in Figure 7.7, is also a good quantum number in Hund’s
cases (a). Table 7.1 lists all possible Ω values that can contribute to each Hund’s
case (a) term (the boldface type and reflection symmetry of each Ω are only known
by combining all the observations listed here).

We can then determine the 2S+1ΛΩ of each PEC in Figure 7.7. This establishes that

A1Σ0+ , b3Π0−,1 correlate to Cs (6P1/2) + Na (3S1/2) (“Cs D1”), while all the other curves

correlate to Cs (6P1/2) + Na (3S3/2) (“Cs D2”). These findings are summarized in Ta-

ble 7.1.

Since we only probe detunings above the Cs D1 asymptote, only B1Π1, c3ΣΩ=0−,1, and

b3ΠΩ=0+,2 are possible candidates for our observed vibrational progressions. Of these,

only the c3Σ+
1 levels have previously been observed in the near-threshold regime [63].

A subset of our measured PA resonances matches those previously observed to within

1 GHz. These are labeled with the dashed vertical lines in the bottom panel of Figure 7.6.

Next, we fit Equation 7.3.4 to our observed PA lines (Figure 7.8). Fitting to the posi-

tions of our observed c3Σ+
1 resonances gives v0 = −0.79 and C6 = 8.5(6) × 103 a.u. (blue

curve in Figure 7.8). Curiously, this value agrees more with the theoretical value for 1,3Π

states, C6 = 7.96× 103 a.u. [123]. We note that our state labels correspond to the molecu-

lar wavefunctions in the near-threshold regime and differ from the labels in Ref. [123] due

to an avoided crossing between B1Π1 and c3Σ+
1 at R = 9.4 Å [124]. This means that, in
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Figure 7.8: Fit of C6 coefficients to observed PA resonances. The observed
PA resonance positions are plotted against the vibrational number v′. Except for at
v′ = −7, the RMS deviation of the fitted dispersion curve from the measured fre-
quencies are 0.3, 0.6, and 0.8 GHz for the c3Σ1, c3Σ0, and B1Π1 states, respectively.
At v′ = −7, a crossing of molecular energy levels causes the measured spectrum
to deviate from the prediction based on eq. 7.3.4, so we omit those points. Each
curve is labeled by its fitted C6 coefficient and its associated Hund’s case (a) term
symbol.
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the long-range, the c3Σ is actually B1Π in character.

From the remaining PA lines, we identify two more progressions. The first of these,

labeled with solid black vertical lines in the bottom panel of Figure 7.6, agrees most

closely with lines predicted from an experimental B1Π1 PEC [125] to within 6 GHz (the

numerical line positions are compiled in Table B.1 of Ref [126]). The accuracy of this

PEC is estimated to be 0.16 cm−1=5.28 GHz, based on the deviations of predicted to

actual measured line positions [125]. Furthermore, this progression yields a fitted C6 =

1.42(33)×104 a.u., similar to the theoretical value for 1,3Σ states, C6 = 1.83×104 a.u. [123].

Due to the avoided crossing mentioned above, we indeed expect B1Π1 to have long-range

Σ character. We therefore assign this progression to the B1Π1 potential (red curve in Fig-

ure 7.8).

The last remaining progression (labeled by gray solid lines in bottom panel of Fig-

ure 7.6) yields a fitted C6 = 1.47(26) × 104 a.u., which again suggests that it is a 1,3Σ

state [123]. We assign this progression to c3Σ0− because this is the only other compatible

state based on the fitted C6 coefficient and the atomic asymptote. We plot the LB model

fit in black in Figure 7.8.

We note that c3Σ0− has no PEC in the literature. While a few c3Σ0− vibrational levels

have been observed (e.g., at binding energies of 271, 568, and 602 cm−1 [124]), there have

been no observations of near-threshold states, possibly due to coupling with the b3Π0

which asymptotes to Cs D1, resulting in pre-dissociation [124]. This causes them to cou-

ple back into free atoms with large kinetic energy derived from the slope of the molecular
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potential, and subsequently exit the trap in pairs. We can readily observe these hereto-

fore unseen PA lines since our experiment is directly sensitive to two-body loss.

To summarize:

1. The assignment of the c3Σ+
1 progression is based on previous observation of the

same resonances [63].

2. The assignment of the B1Π1 progression is based on the fitted C6 coefficient and
known avoided crossing with c3Σ+

1 , and extrapolating to near-threshold using an
experimental PEC [125].

3. The assignment of c3Σ0− is based on the fitted C6 coefficient and the process of
elimination.

For all of the above analysis, we have ignored v′ = −7 because of an avoided crossing

which perturbs the line positions.

We interpret the photoassociation spectrum as clear evidence for molecule formation,

because the PA lines appear exclusively as simultaneous loss of Na and Cs, and the reso-

nance frequencies agree with independent measurements.

7.4 Summary and Outlook

The key advantages afforded by tweezers can be realized even without ground-state cool-

ing. Here, we show that tweezers offer an exceptionally clean platform for studying atomic

collisions and molecular spectroscopy. First, post-selecting on single-shot single atom im-

ages allow us to disentangle one-body (background gas collision) and two-body (hyperfine-

changing collision) lifetimes from a single data set. Second, direct measurement of two-
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body atom loss is a simple and robust signal for performing free-to-bound molecular spec-

troscopy.

We are now prepared to coherently transfer Na and Cs atoms into a single molecule.
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Chapter 8

Two-Photon Spectroscopy of NaCs

in the Triplet Ground State

8.1 Introduction

The photoassociated molecules in the previous chapter spontaneously decay in about

30 ns. This precludes any further coherent manipulation, which requires the molecule

to reside in well-defined, long-lived quantum states throughout the transfer to the rovibra-

tional ground state.

To that end, we measure the binding energy EB of a target molecular state in the

ground electronic manifold. Specifically, we choose the last-bound state a3Σ(v′′ = −1),

which is predicted to lie 240 MHz below threshold [126] based on potential energy curves

from Ref. [127]. With a mean bond length of ≈ 30 Å, this state has no appreciable per-
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manent dipole moment. Nevertheless, there is a major advantage of performing STIRAP

from a3Σ(v′′ = −1) instead of a3Σ(v′′trap = 0) (unbound atoms in their motional ground

state): the nearest state is ∼ 100 MHz away (energy splitting of molecular J-states) in-

stead of ∼ 10 kHz (tweezer axial trap frequency). The larger energy spacing allows for

shorter transfer times over which the STIRAP lasers must maintain phase coherence with

each other. Moreover, the long coherence time needed for two-photon Raman transfer

from a3Σ(v′′trap = 0) to a3Σ(v′′ = −1) is enabled by their small energy difference: the two

optical frequencies can be derived from diffraction orders of an AOM driven by a stan-

dard RF source, giving a coherence time of ≫ 1 s.

In this Chapter, we repeat spectroscopy from Chapter 7, but this time with atoms in

a well-defined quantum state a3Σ(v′′trap = 0) and with nearly pure σ+-polarized light.

Because of the well-defined initial state and polarization, we resolve hyperfine structure

of c3Σ(v′ = −5), and obtain its line position with 1 MHz precision. Using this as the

intermediate state for two-photon spectroscopy, we find EB = h 298.38(7) MHz.

8.2 Model for Two-Photon Spectroscopy

Consider the level diagram in Figure 8.1A for two-photon spectroscopy of NaCs. For

small detunings ∆p and ∆c, we consider only three levels:

1. a3Σ(v′′trap = 0), denoted |v′′trap = 0⟩ for convenience. This is the state we initialize
by the techniques in Chapter 6 consisting of unbound, motional ground state Na
and Cs atoms in |2, 2; 4, 4⟩.
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Figure 8.1: Two-photon spectroscopy of NaCs. (A) Level diagram. The
three-level system consists of vibrational states |v′′trap = 0⟩ and |v′′ = −1⟩ in the a3Σ
potential and excited state |v′ = −5⟩ in the c3Σ potential. The excited state decays
out of the system at a rate Γe. Ωp couples |v′′trap = 0⟩ to |v′ = −5⟩ with detuning
∆p and Ωc couples |v′′ = −1⟩ to |v′ = −5⟩ with detuning ∆c (negative corresponds
to red detuning). We are trying to determine EB, the binding energy of |v′′ = −1⟩.
(B) Dressed state energies E± plotted as a function of ∆c. Blue dashed line
corresponds to the PA resonance ∆p = 0, while the red dashed line corresponds
to the Raman resonance ∆p = ∆c. Absorption (resulting in molecule formation)
occurs along the solid black curves.
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2. a3Σ(v′′ = −1), denoted |v′′ = −1⟩. This is the most weakly-bound vibrational
state in the a3Σ potential, and the target state for eventual two-photon transfer
(Chapter 9), whose binding energy EB we want to determine.

3. c3Σ(v′ = −5), denoted |v′ = −5⟩. This will serve as the intermediate state for
two-photon transfer.

The molecule is driven by two lasers, Ωp (“probe”) and Ωc (“control”). Ωc couples

|v′′ = −1⟩ ↔ |v′ = −5⟩ with detuning ∆c, and Ωp couples |v′′trap = 0⟩ ↔ |v′ = −5⟩ with

detuning ∆p (negative corresponds to red-detuning). |v′ = −5⟩ decays out of the three-

level system altogether at a rate Γe. We shall refer to the two-photon detuning between

probe and control fields as δpc (not shown). The Raman resonance condition ∆p = ∆c is

therefore identical to δpc = EB/h̄.

In the limit of Ωp ≪ Ωc, the effect of Ωc is to produce new eigenstates

|±⟩ ∝ −
(
∆c

Ωc
∓

√
1 +

(
∆c

Ωc

)2)
|v′ = −5⟩+ |v′′ = −1⟩ (8.2.1)

with energies given by

E± =
∆c ±

√
Ω2
c +∆2

c

2
(8.2.2)

.

Figure 8.1A plots the behavior of E± as a function of ∆c, showing the avoided crossing

at ∆c = 0. Molecule formation occurs whenever ∆p coincides with either E±/h̄ curve.

The two asymptotes, ∆p = 0 (dashed blue line) and ∆p = ∆c (dashed red line), corre-
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spond to the PA and Raman resonances, respectively.

To determine EB, we simply map out two-body loss over the ∆p − ∆c plane. The

avoided crossing, or “dark resonance”, will manifest as a suppression of absorption (i.e.,

molecule formation), and signify when ∆p = ∆c = 0. The two-photon detuning δpc then

directly gives EB/h̄.

8.3 Matrix Elements

One important feature of two-photon molecular spectroscopy is that the so-called free-to-

bound transition |v′′trap = 0⟩ → |v′ = −5⟩ has a much smaller dipole transition matrix

element than the bound-to-bound transition |v′′ = −1⟩ → |v′ = −5⟩. To estimate their

ratio, we calculate the vibrational wavefunction overlaps using the Fourier Grid method

(Appendix D.1) assuming an isotropic harmonic trapping potential with 80 kHz trap

frequency (the geometric mean of the trapping frequencies in the 3 directions). The red

curve in Figure 8.2 is the calculated vibrational wavefunction overlap between |v′′trap = 0⟩

and |v′⟩, which is proportional to Ωp, whereas the blue curve is the calculated vibrational

wavefunction overlap between |v′′ = −1⟩ and |v′⟩, which is proportional to Ωc. As can be

seen from the plot, the choice of |v′ = −5⟩ as the intermediate state ensures optimal wave-

function overlap, while maintaining adequate detuning from the dissociation threshold to

prevent resonant kick-out of the Cs atom that would reduce signal contrast.

As expected, the wavefunction overlap for the free-to-bound transition is much weaker
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Figure 8.2: Calculated absolute value of vibrational wavefunction overlap
for the c3Σ(v′) ← a3Σ(v′′) transitions as a function of calculated binding
energy. Red curve is for the free-to-bound (v′′trap = 0) transition while blue curve is
for the bound-to-bound (v′′ = −1) transition. The red dots and the numerical val-
ues indicate wavefunction overlaps for transitions to the (v′ = −5) state, as labeled
in Figure 7.6.

(by a factor of 300) than that for the bound-to-bound transition. Also, the probability

that |v′ = −5⟩ decays back to either |v′′trap = 0⟩ or |v′′ = −1⟩ is only (6.85 × 10−4)2 +

(0.206)2 = 4%, justifying the assumption that Γe consists only of decay out of the three-

level system.

Table A.2 in Ref. [126] gives a theoretical binding energy of −0.008 cm−1 = −240 GHz,

calculated with the potential energy curves from Ref. [127], so we begin our search in that

neighborhood.
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8.4 Beam Path for Two-Photon Spectroscopy

To generate the two optical fields Ωc and Ωp, we use the beam path shown in Figure 8.3.

The light comes from a DBR (Photodigm PH852DBR240TS). We use a 135 MHz AOM

(IntraAction ATM-1352DA2B) in a double-pass configuration to generate two frequencies:

the 0th order, at the original laser frequency, and the ±1st order, offset by twice the AOM

RF drive frequency.

Both probe and control beams are recombined on a PBS. A HWP followed by PBS

allows continuous tuning of their relative powers. Finally, the beam is coupled into a fiber

and routed to the apparatus.

The RF drive frequency allows us to vary the two-photon detuning δpc, and the laser

temperature allows us to vary ∆p and ∆c simultaneously. The combination gives full con-

trol over both ∆p and ∆c.

The inset of Figure 8.3 shows the various AOM configurations used in this Chapter.

1. To calibrate Ωp via PA (Section 8.6), the AOM is inactive and only the 0th order
beam is used.

2. To perform a coarse search for EB using a 2D dark resonance scan (Section 8.7), we
turn on the +1st order of the AOM to supply Ωc. Since the 0th order can be made
arbitrarily strong compared to the 1st order, this makes it less likely that we will
have insufficient laser power to drive the weaker free-to-bound transition (although
we later found that power was not an issue).

3. To precisely determine EB (Section 8.7), the 0th order supplies Ωc and the −1st

order supplies Ωp. The original reason for swapping the AOM orders was to be able
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Figure 8.3: Frequency generation for spectroscopy. Laser light at 852 nm
originates from a DBR (not shown). The AOM double-pass configuration yields a
0th order beam, at the original laser frequency, and the 1st order diffracted beam,
offset by twice the AOM driving frequency. The two beams are combined on a
PBS and coupled into a single-mode, polarization maintaining fiber (FC). A switch-
ing AOM (sw. AOM) turns on or off both beams simultaneously. (Inset) AOM
configurations (with diffraction orders indicated) used in this chapter (see text).

to directly scan ∆p across the EIT transparency window using the AOM RF drive
frequency (over which we have precise control).

The beam layout on the apparatus side is discussed in Subsection 7.3.2, except that we

now set the polarization to nearly σ+ instead of horizontal.
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8.5 Optimizing the PA beam polarization

After aligning the PA beam to the tweezer using the procedure outlined in Subsection 7.3.3,

we optimize the PA beam polarization and B-field angle so that the PA beam is σ+-polarized.

The original motivation was to avoid having to repump during spectroscopy. For atoms

prepared in the stretched state |2, 2; 4, 4⟩ with Ftotal = 6, scattering of a σ−- or π-polarized

photon might lead to decay out of the bright state (Figure 8.4A). When scanning the PA

laser frequency, the Stark shifts can be very large, requiring constant adjustment of the

repumping laser frequency.

Another advantage of σ+-polarized PA from |2, 2; 4, 4⟩ is less spectral congestion since

much fewer excited states are accessible. This allows easier isolation and assignment of

PA resonances.

With the PA laser in the configuration shown in Figure 8.3 Inset #1, we set the free-

running frequency to ∼ 351720.9 GHz. We load only Cs into the tweezer and optically

pump to |4, 4⟩. We rotate the B-field to be along the PA beam direction by linearly ramp-

ing Bx → Bx cos(θ) and By → By cos(θ) + Bx sin(θ) in 4 ms (here, Bx, By, Bz are the

original B-field components used for optical pumping).

We use the Cs hyperfine state to detect polarization purity. Perfectly σ+ polarized PA

light can only drive the |4, 4⟩ → |5′, 5′⟩ transition (Figure 8.4A) and the atom will never

decay to the F = 3 manifold. However, any other polarization components could lead
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to “depumping” of the atom into the F = 3 manifold, which can be discerned via state

sensitive imaging of Cs.

First, we roughly align the HWP and QWP in Figure 7.5 to give either σ+- or σ−-

polarization (without measuring the magnetic field, we cannot tell which is which at

this point). To distinguish between the two, we rotate the B-field along the PA beam

and measure depumping rates of Cs for the two cases (Figure 8.4B). We set the QWP

to the angle which yields the slower of the two. The finite decay rate persists because the

PA beam is not perfectly σ+-polarized. Finally, we rescan the B-field angle at a fixed PA

pulse time of 2 ms and find the optimal B-field angle to be 40◦. (Figure 8.4C). The PA

beam is now σ+ polarized.

We found it was critical to use a ND filter to attenuate PA beam power, rather than

using the HWP to put most of the power in the rejected port of the PBS. Let’s say we

want to attenuate |H⟩-polarized light. The naive approach would be to use the HWP to

give |H⟩ + 100|V ⟩, which becomes |H⟩ + 0.1|V ⟩ after a 1000:1 extinction PBS. In fact, to

preserve the polarization purity, it is better to use the HWP to give 100|H⟩ + |V ⟩, which

will yield 100|H⟩+ 1
1000 |V ⟩ after the PBS, and then attenuate the power with a ND filter.

8.6 Calibration of Ωp via PA of c3Σ(v′ = −5)

The a3Σ(v′′trap = 0) → c3Σ(v′ = −5) PA resonance had been found previously in Sec-

tion 7.3 for thermal Na and Cs atoms optically pumped to F = 1 and F = 3, respectively,
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Figure 8.4: Using PA depumping rate on Cs to set QWP angle corre-
sponding to σ+ polarization. (A) Level diagram showing some possible
decay channels to F=3. Upon absorbing a σ− or π polarized photon, the atom
can decay into F=3. If the atom only interacts with σ+ photons, it remains in F=4.
Therefore, longer depumping time indicates the light is mostly σ+-polarized. (B)
Depumping of Cs with HWP set to 49◦ and QWP set to 51◦. The depump-
ing timescale is 1 ms. Depumping of Cs with HWP set to 49◦ and QWP set to
316◦. The depumping timescale is 5 ms. The latter corresponds to the desired σ+-
polarization. (C)Scanning B-field angle to optimize PA polarization. With
a 2 ms-long PA pulse, the PA depumping is minimized at a B-field angle of 40◦.

to prevent losses due to spin-changing collisions.

The difference here is that the atoms are prepared mostly in a single quantum state

following RSC and adiabatic merge as described in Chapter 6. This spin configuration,

while not the lowest energy state for unbound atoms, should also be stable against spin-

changing collisions since mF1 +mF2 is conserved for collisions occurring in the motional

ground state [128].

In practice, we find that even in the absence of PA light, this state undergoes lossy two-

body collisions in the rotated B-field with a timescale of ∼ 50 ms, likely due to sponta-

neous Raman scattering from the tweezer. We note that this is 10× faster than reported

in Section 7.2, even though |2, 2; 4, 4⟩ is expected to be stable against spin-changing colli-

148



sions. The differences here are motional state cooling, giving higher effective pair density

of the two atoms, and a quantization B-field that is rotated relative to the tweezer po-

larization. We did not investigate the cause further since even a 50 ms loss timescale is

sufficient for PA. In addition, all spectroscopy measurements were taken with a ΓRP =

1/60 µs repumping beam to constantly pump Cs atoms from F = 3 back into F = 4,

although this was likely not necessary due to the σ+-polarized PA beam.

We are now ready to scan over the PA resonance. The sequence is as follows:

1. Prepare Na and Cs in the motional ground state of the same tweezer in |2, 2; 4, 4⟩.

2. Rotate the B-field to 40◦.

3. Turn on 4 mW PA light for 5 ms.

4. Determine probability of two-body loss.

5. Repeat for different PA frequencies.

During the PA frequency scan, the laser is free-running but monitored on a waveme-

ter in order to postselect data with good frequency stability. The postselected data were

found to drift by 100 MHz overnight. Figure 8.5A shows a coarse scan over PA reso-

nances with 50 averages at each point. We observe a number of finely resolved peaks,

evenly spaced by 1 GHz. We believe these are due to hyperfine structure of the J=1 peak

rather than rotational structure, due to the equal spacing and the fact that we see many

peaks even though the initial atoms are cold and therefore photoassociation should not

access highly excited rotational states [80]. All transition frequencies are expected to be
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Figure 8.5: PA spectroscopy of a3Σ(v′ = −5). (A) Broad scan of PA
resonances. Well-resolved peaks spaced by ≈ 1 GHz, likely due to hyperfine
structure of a3Σ(v′ = −5). Dashed line indicates the lowest energy resonance,
which will serve as the excited state for the dark resonance. (B) Finer scan of
the peak indicated in (A). The peak is fitted to a Gaussian with center at
351688.690(1) GHz. (C) PA decay as a function of time. Holding the PA laser
on resonance and measuring the timescale of PA yields an exponential decay with
2.9(2) ms time constant.

9.2 GHz smaller than those measured in Subsection 7.3 because here Cs is initialized in

F = 4 instead of F = 3.

A finer scan is shown in Figure 8.5B and yields a center frequency of 351688.69 GHz.

Setting the PA power to 300 µW and scanning the PA time on resonance, we obtain the

2.9(2) ms decay curve in Figure 8.5C. In the limit Ωp ≪ Γe, the PA rate is given by

Ω2
p/Γe. Assuming Γe = 2π × 5.2 MHz [119], we obtain Ωp = 2π × 16.9(6) kHz.
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cal to those in Figure 8.1B, but skewed due to the different horizontal axis (AOM
configuration is shown in Figure 8.3 Inset#2). (B) Fine 1D scan of dark res-
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scanning ∆p. The Gaussian fit yields EB/h = 298.38(7) MHz.
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8.7 Determination of EB via dark resonance spectroscopy

To search for the dark resonance, we now switch to the AOM configuration shown in Fig-

ure 8.3 Inset #2. We vary the RF amplitude and frequency simultaneously to counter-

act the dependence of the AOM diffraction efficiency on the RF drive frequency. This

maintains the probe and control beam powers to within 5% of 700 µW and 230 µW, re-

spectively, throughout the scan. We used a pulse length of 3 ms with both Ωp and Ωc on

simultaneously.

Figure 8.6A shows a 2D scan over the dark resonance, with each datapoint consisting

of 400 shots. Note that, here, the horizontal axis is different than that of Figure 8.1B,

leading to its skewed appearance. The red and blue dashed lines corresponding to PA and

Raman resonances, respectively, are redrawn in Figure 8.6B as guides to the eye.

To determine the center of the dark resonance, we switch to the configuration shown

in Figure 8.3 Inset #3. This enables us to scan ∆p independently of ∆c, which is held

constant. We recalibrate the RF amplitude vs. frequency curve to maintain the power of

probe and control beams at 518 µW and 190 µW, respectively.

Figure 8.6B shows the result when we fix ∆c = 0 (absolute frequency: 351688.98 GHz)

and plot two-body loss as a function of ∆p. We used a 3 ms pulse duration and 200 shots

per data point. The dark resonance is fitted to a Gaussian centered at 298.38(7) MHz,

which directly gives EB/h.
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8.7.1 Note on the dark resonance lineshape

To determine whether we are in the EIT regime, we can estimate Ωc for this measurement

Ωc = 264 Ωp

√
Pc

Pp

where 264 is the ratio of the vibrational wavefunction overlap integrals for the bound-

bound and free-bound transitions (Figure 8.2), Pp = 300 µW is the PA beam power in

Section 8.6, Pc = 190 µW is the control beam power in this Section, and Ωp = 2π ×

16.9(6) kHz (Section 8.6). This gives Ωc = 2π × 3.6 MHz < Γe, fulfilling the condition for

EIT [129]. In addition, the phase coherence between pump and probe fields is inherited

from the RF drive of the AOM and found by an independent measurement to exceed 1 s,

much longer than our pulse duration. In the EIT regime, the dark resonance is expected

to adopt a Lorentzian lineshape with FWHM Ω2
c/Γe [130]. However, while δpc is stable,

the absolute laser frequency was fluctuating by an unknown amount throughout the mea-

surement, which would distort the lineshape. We chose a Gaussian lineshape because it

yields the closest fit.

8.8 Summary and Outlook

We have performed two-photon spectroscopy of a single NaCs molecule and measured the

binding energy of our target a3Σ(v′′ = −1) state to be EB/h̄ = 2π × 298.38(7) MHz.
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Next, we will attempt to efficiently transfer the free atoms into this state using a detuned

two-photon Raman process to suppress spontaneous emission.
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Chapter 9

Two-Photon Raman Transfer to

Triplet Ground State Molecule

9.1 Introduction

The creation of a molecule in the weakly-bound state is an important step toward subse-

quent transfer to deeply-bound molecular states via Stimulated Raman Adiabatic Passage

(STIRAP) [41, 45, 48–52, 131–133]. In previous work, weakly-bound molecules were pro-

duced using Feshbach resonances. However, the Feshbach resonance for NaCs has been

predicted to be at ∼ 800 G and is not easily accessible. Furthermore, not all molecules

(e.g., singlet molecules) have suitable Feshbach resonances. In this work, we instead pur-

sue an all-optical technique [77] to generalize the weakly-bound molecule production to

atoms without suitable Feshbach resonances.
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Figure 9.1: Level diagram and vibrational state numbering for two-photon
Raman transfer from an atom pair to a weakly-bound molecule. Two
lasers L1 and L2 with a frequency difference δ derived from an AOM are phase co-
herent and drive the atoms from the tweezer motional ground state a3Σ+(v′′trap = 0)
to the weakly-bound molecular state a3Σ+(v′′ = −1) . A large detuning ∆ from the
most deeply bound vibrational state c3Σ(v′ = 0), which decays at a rate Γe, reduces
spontaneous emission during molecular transfer, which occurs when the two-photon
frequency difference δ is resonant with the binding energy.
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To that end, we demonstrate two-photon Raman transfer to a ground state molecule

(Figure 9.1). Similar to in Chapter 5, we use two Raman beams L1 and L2 to drive a

transition between orthogonal vibrational states. There are two main differences, how-

ever.

1. Our Raman beams for molecular transfer are deliberately copropagating, to mini-
mize the momentum kick imparted to the final molecule’s center of mass.

2. The extent of the molecular wavefunctions is 10 − 100× smaller than that of the
harmonic trap wavefunctions.

As a result, ηR for molecular Raman transfer can be ∼ 107 smaller than in Chapter 5!

Therefore, the same arguments for driving motional transitions between orthogonal vibra-

tional states of the same molecular potential do not apply here. Fortunately, here, the

large vibrational energy spacings in the excited electronic manifold (Ev′=i+1 − Ev′=i)/h̄

are significant compared to ∆. Therefore, ∆i are very different and the sum

ΩR ≈
∑
i

⟨v′′2 |v′ = i⟩⟨v′ = i|v′′1⟩
∆i

(valid for very small ηR such that eikRx ≈ 1) is no longer well-approximated by

∑
i

⟨v′′2 |v′ = i⟩⟨v′ = i|v′′1⟩
∆

= 0

where ∆i ≡ ∆ + (Ev′=i − Ev′=0)/h̄, |v′′⟩ denotes a vibrational state in the ground elec-

tronic manifold, and |v′⟩ denotes a vibrational state in the excited electronic manifold.
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In summary, driving vibrational transitions between ground molecular states with co-

propagating Raman beams is enabled by the large vibrational spacings of the electronic

excited molecular potential, and not, as in Chapter 5, by the phase gradient of the optical

field on the spatial length scale of the nuclear wavefunction.

In this Chapter, we drive a Raman transition from a3Σ+(v′′trap = 0) to the weakly-

bound molecular state a3Σ+(v′′ = −1), using c3Σ(v′ = 0) as the intermediate state. The

reason for this choice of intermediate state is because we can red-detune almost arbitrar-

ily far from it to suppress spontaneous emission during Raman transfer. We describe a

new alignment scheme necessitated by the large detuning of our 1038 nm molecular trans-

fer laser from the Cs D2 atomic threshold, direct measurement and identification of the

c3Σ(v′ = 0) ← a3Σ+(v′′trap = 0) PA resonances, and finally two-photon Raman trans-

fer of free atoms to a molecule with an efficiency of 70% (which closely matches the joint

motional ground state probability of the initial unbound atoms). However, we also find

that, while the transferred molecules should be otherwise long-lived, off-resonant scatter-

ing from the Raman beams populates other states as soon as the molecule is formed. We

conclude with an outlook for future work.

9.2 Prediction of v′ = 0 Resonance Position

The natural linewidths of deeply bound PA resonances are 10’s of MHz wide, compared

to the ∼ 100 THz deep triplet potential. Therefore, it is necessary to start with a guess
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of the c3Σ+
1 (v

′ = 0) ← a3Σ+(v′′trap = 0) transition frequency before beginning the actual

search. Although this transition has never been directly observed, it can be inferred from

two previous measurements: one based on pulsed depletion spectroscopy (PDS) [124]

and one based on coefficients of the Dunham expansion representation of the c3Σ poten-

tial [63].

Ref. [124] reports 13673.90 cm−1 for c3Σ+
1 (v

′ = 0) ← X1Σ+(v′′ = 9). To find the

expected frequency of the c3Σ+
1 (v

′) ← a3Σ+(v′′trap = 0) transition, we need to subtract

the X1Σ+(v′′ = 9) binding energy, calculated to be -4044.92 cm−1 [126] (since X1Σ+ and

a3Σ+ have the same atomic asymptote). This yields 9628.98 cm−1, or 288670(15) GHz.

The quoted uncertainty comes from that of the originally observed PDS line.

The Dunham expansion is a polynomial expression for the rotational and vibrational

energies of a diatomic molecule [134]. Once you have measured a subset of the energy

levels, you can fit it to the Dunham expansion to obtain the energies of the missing levels.

The expansion coefficients for the c3Σ+
1 potential of NaCs in Ref.[63] were found to be

valid only for the vibrational states with v′ ranging from 0 to 25. For c3Σ+
1 (v

′ = 0, J = 2),

the Dunham expansion yields 288731 GHz.
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9.3 PA laser optics

9.3.1 Laser Side

The 1038 nm laser used for molecular transfer is described in Subsection 2.7.3. The beam

layout on the “laser side” for PA at 1038 nm is intended to maximize power with little

regard for pulse timing accuracy or precision (the PA pulse times we use are typically

10’s to 100 ms). The 1038 nm gain module fiber output is collimated into free space and

passes through an isolator (Conoptics M714) followed by a HWP, PBS, and SR476 shut-

ter, before being coupled back into the fiber that is routed to the apparatus. The PA

pulse length uncertainty is about 800 µs, determined by the shutter rise time. The re-

jected port of the PBS is coupled into the wavemeter so the laser frequency can be mon-

itored constantly. We can obtain up to 100 mW on the fiber output without the shutter

clipping the beam.

9.3.2 Apparatus Side

We had to make significant changes to the apparatus side PA beam path because the

FCF for PA to c3Σ+
1 (v

′ = 0) is suppressed by a factor of 240 compared to c3Σ+
1 (v

′ = −5)

in Section 8.6. Indeed, we were not able to observe any PA resonances using the previ-

ous PA beam path (60 µm beam diameter, 16 mW power, 40 ms PA time) due to the
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Figure 9.2: “Apparatus side” beam setup for v′ = 0 PA spectroscopy. (A)
Top view. To avoid astigmatism and provide near-σ+ polarization without having
to rotate the B field, the beam enters the cell nearly along the optical pumping
beam. Either 852 nm (for aligning purposes) or 1038 nm (for spectroscopy) light
can be butt-coupled into the input fiber. A PBS, HWP, and QWP set the beam’s
circular polarization. The beam is expanded with a telescope consisting of lenses
L1 and L2, then hits a picomotor mirror mount for precision steering. It is then
focused into the cell with lens L3. L2 is mounted to a translation stage so that the
PA beam focus can be translated along the beam axis. A flipper mirror placed after
the focusing lens can be flipped into the beampath to send it onto a beam profiler
for diagnosing and determining the position of the beam focus. The beam profiler is
also mounted on a translation stage. The objective and tweezer and coordinate axes
are shown for reference. Axes indicate the coordinate system. (B) View along
the tweezer propagation direction. The angle between the PA beam and the
OP/ Repumping beam is ≈ 7◦ (not to scale).
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aberrations induced by the 40◦ angle of incidence on the glass cell wall, which limited

the achievable peak PA beam intensity. Finally, the 852 nm beam would be horizontally

shifted by 3 µm relative to the 1038 nm beam due to the difference in refractive index,

making it difficult to use the 852 nm light as an alignment reference.

The new beam path is shown in Figure 9.2B. After exiting the fiber on the apparatus

side, the beam is collimated with a triplet collimator (Thorlabs TC06FC-1064). The po-

larization is set with a PBS, HWP, and QWP, then expanded to 12 mm FWHM with a

Keplerian telescope (L1 and L2). The 2D steerable mirror is a silvered (to preserve the

polarization) elliptical mirror with two picomotor axes provides fine control of the beam

angle. Finally, a f3 = 125 mm achromat focuses the beam into the end of the cell. L2

is on a z-translation stage, allowing us to move the PA beam focus along its optical axis.

This time, we opted to launch the PA beam almost parallel to the Cs optical pumping

beam, but at ≈ 7◦ so that it could have a separate beam path with polarization optics for

1038 nm. The near-normal angle of incidence suppresses astigmatism from non-normal in-

cidence angles on glass. An added benefit is that the PA beam can be σ+-polarized with-

out needing to rotate the B-field. A flipper mirror can be moved in and out of the beam

path to redirect it onto a beam profiler to help with alignment (Section 9.4).

We found it was critical to adjust the picomotor micrometers such that the heavy 2-

inch diameter mirror and front plate were not significantly (> 10◦) angled downward, to

maintain good contact between all micrometer bearings and the front plate cone/wedge/flat

surfaces. Poor contact led to 10 µm slippage of the picomotor actuators, which could not
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be explained by the hysteresis of the piezo actuators alone.

We also found that the motion in the horizontal and vertical axes were coupled: +139 nm

horizontal displacement yields -22 nm vertical displacement, and +85 nm vertical dis-

placement yields -5 nm horizontal displacement.

9.4 1038 nm Alignment Scheme

9.4.1 Coarse Alignment

In Subsection 7.3.3, we aligned the PA laser using resonant kick-out because the PA fre-

quency was sufficiently close to atomic threshold that the Cs atom could efficiently cycle

σ+-polarized PA photons. In this Section, we are 63 THz detuned from the Cs D2 line

and we cannot rely on resonant kick-out to provide the alignment signal.

Alignment of the PA beam to the tweezer goes as follows. First, we couple 852 nm

light, resonant with the cycling |4, 4⟩ → |5′, 5′⟩ transition on the Cs D2 line, into the PA

beam fiber. As before, there is a section of fiber attached to the collimating lens on the

apparatus side, and we simply butt-couple either 852 nm or 1038 nm carrying fibers so as

not to disturb the alignment of the collimator.

We remove L3 and place an iris between L2 and the steerable mirror to shrink the PA

beam. The PA beam is now small and collimated. The beam angle is adjusted to extin-

guish the Cs MOT via resonant kick-out. The iris is removed and the final lens inserted
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≈ f3 away from the atom location so that the MOT is still kicked out at very low opti-

cal power. Recording survival probability of the single Cs atom as a function of the beam

angle finely aligns the transverse position of the PA beam to the tweezer, although the

focal position along the optical axis is still very uncertain (the Rayleigh range is only

zR = 76 µm). Indeed, by scanning the PA beam entirely past the Cs atom, we estimated

the PA beam diameter to be 100 µm at the location of the Cs atom based on ray optics

calibration of picomotor displacement-to-PA beam focus displacement.

In principle, the focus could be moved along z by adjusting the z-position of L3. In

practice, however, it was easier to move L2. Unfortunately, this would de-collimate the

beam leading up to L3, thereby reducing the PA beam Strehl ratio. However, since we

expect that the focus was not too far off, and that L2 would not have to move very much,

we opted to move L2.

To precisely focus the PA beam onto the Cs atom, we translate L2 along z in steps of

∼ 1 mm, redoing the transverse alignment of the PA beam at each step.

At this point, it is not sufficient to replace 852 nm with 1038 nm light due to chro-

matic aberration of L3, which would focus the 1038 nm and 852 nm beams to different

distances. To align the focii, we pick off the PA light with the flipper mirror and use

the z−position of the beam profiler to mark the 852 nm beam focus. Then, we replace

the 852 nm with 1038 nm light, and adjust the focusing lens z-position to refocus the

1038 nm light onto the beam profiler. Once the flipper mirror is removed, the 1038 nm

beam will be focused onto the tweezer.
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We have calibrated the picomotor-to-atom displacement by scanning the picomotor in

steps and measuring the displacement of the focus on the beam profiler (Figure 9.2). The

calibration is as follows: 151 nm/(positive horizontal step); -164 nm/(negative horizontal

step); 91 nm/(positive vertical step); -97 nm/(negative vertical step). The asymmetry

between positive and negative picomotor steps is due to hysteresis of the piezo actuator.

9.4.2 Fine Alignment Using Vector Light Shift

Finally, to directly verify the 1038 nm beam-to-tweezer transverse alignment, we maxi-

mize the differential vector light shift induced by the PA beam on the Cs atom’s ground

hyperfine states |3, 3⟩ and |4, 4⟩. The vector shift of the ground state is given by[70]

U(r) = −U0(r)
δ2 − δ1
δ2 + 2δ1

C(r) · gF F̂

where U0(r) is the scalar shift; δ1 and δ2 are the detunings of the laser (1038 nm) from

the Cs D1 (894.6 nm) and D2 (852.3 nm) transitions, respectively; C(r) is the polariza-

tion factor with a magnitude of close to unity for our nearly-circularly polarized PA beam

and points along the quantization B-field, gF is the Landé g-factor, and F̂ is total angular

momentum operator. The vector shift acts like a B field with a strength proportional to

the laser intensity (Figure 9.3A). The states |FCs,mCs
F ⟩ = |3, 3⟩ and |4, 4⟩ should there-

fore experience a differential shift proportional to ∆(gFmF ) = 7/4. For 50 mW optical

power, we estimate U0(r) = 1.86 MHz. Therefore, the differential shift between |3, 3⟩ and
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|4, 4⟩ should be ≈ 344 kHz, which can be easily resolved by measuring the Raman reso-

nance.

Figure 9.3B shows the vector shift measured directly after the coarse alignment pro-

cedure described above. It is about 10× smaller than the expected shift, so we proceed

to map out the vector shift as a function of horizontal (Figure 9.3C) and vertical (Fig-

ure 9.3D) displacements of the PA beam. This measurement also confirms that the PA

beam waist is ∼ 10 µm, as expected.

Our best observed alignment gave a shift of about half the predicted 344 kHz. The

discrepancy may be due to impure polarization resulting from transmission through the

glass cell and the ≈ 7◦ misalignment of the PA beam with respect to the quantization

axis.

9.5 PA measurement

To perform PA spectroscopy, we frequency broaden the laser to 40 MHz by modulating

the current with a 3 kHz triangle wave. The PA laser is pulsed on at 60 mW for 100 ms.

Each data point is an average of 50 shots.

We begin the scan at a PA frequency of 288626 GHz, increasing the frequency in steps

of 40 MHz. The first features are not seen until 288690 GHz. This part of the PA spec-

trum for c3Σ+
1 is shown in Figure 9.4A. Colored regions correspond to different J mani-

folds. Within each manifold, the total angular momentum quantum number F ′ is labeled
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Figure 9.3: Aligning 1038 nm PA beam using vector light shift of Cs
ground state |3, 3⟩ → |4, 4⟩ transition. (A) Partial ground state Zeeman
structure of Cs. Solid horizontal lines show energy levels in the presence of
B⃗OP . Dashed lines show energy levels in the presence of additional off-resonant
σ+-polarized light, as in the case of the 1038 nm PA beam. This shift can be mea-
sured by driving Raman transitions on the |3, 3⟩ → |4, 4⟩ transition (red arrows)
and is proportional to the local light intensity. It therefore serves as a proxy for the
degree of PA beam/tweezer alignment. Energy shifts are exaggerated for clarity.
(B) Measurement of vector light shift at the origin of our alignment scan.
The two-photon Raman detuning is scanned across the |3, 3⟩ → |4, 4⟩ transition
with (red) and without (blue) the 1038 nm laser on. We use co-propagating Ra-
man beams to avoid motional sidebands. The spectra are fit to a Rabi lineshape.
We extract a shift of 28(1) kHz. (C) Vector shift as a function of horizon-
tal position of the 1038 nm beam. Beam focus is centered at 8.5(3) µm and
has a FWHM of 11.2(7) µm. Arrow indicates the point representing the measure-
ment in panel (B). (D) Vector shift as a function of vertical position of the
1038 nm beam. Horizontal position was parked at 8.5(3) µm. Beam focus is cen-
tered at −5(1) µm and has a FWHM of 25(5) µm. Maximum observed light shift is
160 kHz. Curves in (C) and (D) are fit to Gaussians with zero offset.
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above each peak. The reasoning behind these assignments is given in Section 9.6.

Figure 9.4B shows a finer scan over the strongest peak c3Σ+
1 (v

′ = 0, J ′ = 2, F ′ = 7)

using a 15 mW, 75 ms-long PA pulse. The Lorentzian fit gives a transition frequency of

288,698.54(6) GHz.

The uncertainty in the absolute frequency arises solely from the wavemeter accuracy,

which we expect to dominate over the AC stark shift from the 976 nm tweezer.

During this measurement, we noticed that the PA beam focus would drift by ∼ 3 µm

in the horizontal and vertical directions over the course of 2 days. This meant that the

1038 nm induced vector shift would vanish and the PA beam would have to be periodi-

cally realigned. The PA beam path on the “apparatus side” is distributed over multiple

breadboards which experience slow relative drifts, resulting in this gradual beam misalign-

ment.

9.6 Assignment of v′ = 0 PA peaks

Assigning the PA peaks (i.e., determining the quantum numbers of the excited state) is

necessary to verify that what we are seeing is consistent with c3Σ+
1 (ν

′ = 0).

To obtain the hyperfine structure of c3Σ+
1 (ν

′ = 0), we recouple the angular momen-

tum in Hund’s case (a) (which is valid at short-range, i.e., at the bottom of the poten-

tial [126]). The hyperfine structure arises from Na ground state hyperfine structure, with

a splitting of ∼ 1 GHz, and Cs excited state hyperfine structure, with a splitting of ∼

169



J=1

1/2

3/2

5/2 6, ..., 1      +/-

5, ..., 2      +/-

4, 3           +/-

1/2

3/2

5/2 6, ..., 1      +/-

5, ..., 2      +/-

4, 3           +/-

7/2 7, ..., 0      +/-

J=3 

3/2

5/2

7/2

9/2

6, ..., 1      +/-

5, ..., 2      +/-

7, ..., 0 +/-

8, ..., 1      +/-

J+INa J+ICs+INa

J=0 

1/2

3/2

5/2 6, ..., 1      +

5, ..., 2      +

4, 3           +  

1/2

3/2

5/2 6, ..., 1      -

5, ..., 2      -

4, 3           -

7/2 7, ..., 0      -

J=2

J+INa J+ICs+INa

J=1 

3/2 5, ..., 2      -

Ω=1 Ω=0

Parity Parity

J=2 
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50 MHz. Each level in the Ω = 1 manifold splits into parity doublets, while for Ω = 0, the

J manifolds alternate in parity. These are summarized in Figure 9.5 for both Ω = 1 and

Ω = 0.

Our initial preparation of Na and Cs in |2, 2; 4, 4⟩ (i.e., the a3Σ+ potential) and nearly

pure σ+-polarization of the PA beam allows us to make a few statements about the ex-

pected PA spectrum.

1. The rotational constant is Bv = 0.0388 cm−1 = 1.2 GHz [63], meaning that the
J=0→ 1; 1→ 2; 2→ 3, ... splittings should be ∼ 2, 4, 6, ... GHz.

2. Since initial Ftotal = 6, we expect to couple most strongly to states with F ′
total ≥ 7.

3. Since the atoms are initially cold and occupy mostly the rotational ground state,
we expect to couple mostly to low J states due to the ∆J = 0,±1 selection rule.

4. A small amount of σ− or π polarization components in the PA beam may lead to
coupling to F ′ = 5, 6 states. These peaks will appear much smaller, however.

Now we can explain the features in Figure 9.4A. The peaks are arranged in three clus-

ters spaced by ∼ 4, 6 GHz, so we assign them to the J=1,2,3 manifolds, as indicated. We

assign the strongest peak to (J = 2, F ′ = 7). In a separate scan with 100× less PA

power (not shown here), we found that this peak persisted even when the other peaks

disappeared. Assigning the other peaks is a matter of seeing which F’ values are available

for each J manifold, assuming that states with higher F’ have higher energy, and remem-

bering that we should only couple to F’=5,6, or 7.

Since we did not see any peaks at lower frequency than shown here, we conclude that

there is no J=0 component, indicating we are probing the Ω = 1 manifold. We did not see
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any additional features even after scanning 20 GHz above the range shown in Figure 9.4

(the c3Σ+
1 (v

′ = 1) state is expected to lie 1.6 THz above c3Σ+
1 (v

′ = 0) [126]).

9.7 Two-photon Raman Transfer to a3Σ+(v′′ = −1)

For better pointing stability of the molecular Raman transfer beam, we reverted to the

beam path in Figure 7.5. All the beam optics are now on the same 2” thick stainless steel

breadboard to which the objective is also mounted. This is also well isolated from the

breadboard containing the 1 kHz vibrating MOT mirror mounts. Finally, all optics were

mounted with 1” thick optics posts.

To achieve two-photon Raman transfer to the ground molecular state, we first cali-

brated the single-photon Rabi rates of L1 and L2 as follows.

The 1038 nm beam intensity at the Cs atom is calibrated using the vector light shift.

With a beam power of PPA = 20 mW, the vector light shift was measured to be ∆V LS =

2π × 35.7 kHz. We performed PA to the c3Σ+(v′ = 0) and measured a rate KPA =

1/0.35 ms. Therefore, Ω1 =
√
ΓeKPA = 2π × 49 kHz, where the excited state lifetime is

assumed to be Γe = 1/30.4 ns, the same as that of Cs 62P3/2. For arbitrary vector light

shift ∆V LS , this gives

Ω1 =

√
∆V LS

2π × 35.7 kHz2π × 49 kHz
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and

Ω1 =

√
PPA

20 mW2π × 49 kHz = 2π × 11 kHz/
√
mW

for arbitrary PA beam power PPA. For the Raman transfer, we had a ∆V LS = 2π ×

16.3 kHz, giving Ω1 = 2π × 33 kHz. From the theoretical FCF’s, Ω2 = 292 × Ω1; hence,

Ω2 = 2π × 9.6 MHz.

We then increased the one-photon detunings simultaneously, ∆c = ∆p, to maintain

two-photon resonance and reduce population of the excited state, which decays rapidly.

Figure 9.6 shows the measured Raman resonance for a pulse length of 100 ms and ∆ =

2π × 3.2 GHz.

The resonance is fit to a Lorentzian centered at 298.0795(6) MHz with a FWHM of

8(2) kHz. The 70(10)% transfer efficiency matches closely to the relative ground-state

fraction of the Na+Cs atom pair, while the 21(2)% background level can be explained by

spontaneous Raman scattering of the tweezer light from a3Σ+(v′′trap = 0), followed by a

spin-changing collision [114].

For the measurement of the Raman resonance, the two beams L1 and L2 were co-propagating

into the glass cell with beam radii {wx
0 , w

y
0} = {10, 23} µm. We set the L1 and L2 beam

powers to be identical (15 mW each) in order to minimize spontaneous scattering and

the decoherence due to the fluctuating differential AC Stark shift. This can be seen as

follows.

In the limits d2 >> d1 (the bound-bound transition is much stronger than the free-
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bound transition) and ∆ >> EB/h̄, the differential AC stark shift and scattering rate are

both proportional to (P1 + P2)d
2
2.

1. Minimizing the number of photons scattered per π−time. The π-time for the coher-

ent molecular transfer is given by

tπ = (2π∆)/(
√
P1P2d1d2)

where di = Ωi/
√
Pi is proportional to the matrix element for the transition addressed

by Ωi.

Therefore, we want to minimize

(P1 + P2)d
2
i /(
√
P1P2d1d2)

which occurs when P1 = P2.

2. Minimizing the decoherence due to fluctuating differential AC Stark shift. In the ex-

periment, we assume that the total Raman beam power stability is some fixed fraction of

the total power, dPtot ∝ Ptot = P1 + P2. Differential fluctuations of the Raman resonance

must be small compared to the spectral width of a coherent Raman transition, propor-

tional to the Raman Rabi rate, (
√
P1P2d1d2)/(2∆). Therefore, we also want to minimize

(P1 + P2)/(
√
P1P2)

As before, this occurs when P1 = P2.

We have not yet observed coherent atom-molecule oscillations between a3Σ+(v′′trap = 0)
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Figure 9.7: Scattering rate due to the 15 mW 976 nm (307 THz) tweezer
from a3Σ(v′′ = −1). The calculation is performed using the c3Σ potential from
Ref. [63] and a3Σ potential from Ref. [127]. The peaks correspond to different
vibrational states of the c3Σ potential.

and a3Σ+(v′′ = −1) and believe the main source of decoherence was off-resonant scatter-

ing of L1 and L2 beams once the a3Σ+(v′′ = −1) molecule was formed. For the above

conditions, this scattering rate is ΓRaman ≈ 149 Hz, larger than the Raman transfer rate

ΩR = 2π× 50 Hz. Although increasing the detuning ∆ improves the ratio of Raman trans-

fer to scattering rate, the fixed scattering rate of Γtweezer = 30 Hz from a3Σ+(v′′ = −1)

due to the tweezer provided a further constraint.

The calculated scattering rate due to the tweezer as a function of tweezer frequency is

plotted in Figure 9.7. We assume a tweezer beam power of 15 mW, beam waist of 0.8 µm,

and transmission through the objective and glass cell of 0.22. The calculation includes

a3Σ+(v′′ = −1) and a complete basis of vibrational eigenstates derived from the c3Σ+
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excited state molecular potentials which are embedded in an isotropic harmonic well with

a trap frequency of 80 kHz, which is the geometric mean of the experiment axial and ra-

dial trapping frequencies. The dipole matrix elements are assumed to be 3 e a0 times the

relevant wavefunction overlap.

9.8 Summary and Outlook

With two atoms in the motional ground state of the same tweezer, we probed their elec-

tronic ground and excited molecular potentials. This enabled two-photon Raman transfer

of 70 % of the atom pairs into the least bound molecular state of the triplet ground elec-

tronic potential a3Σ+(v′′ = −1).

The Raman transfer is realized by turning on both L1 and L2 simultaneously. On the

other hand, STIRAP [48, 131, 132], which requires L2 to be ramped on before L1, and

δpc = 0 throughout transfer, is typically more efficient and robust to experimental parame-

ters. However, here the small EB/h (∼ 300 MHz instead of ∼ 100 THz), would result in a

large time-dependent AC Stark shift of the initial and final states during power ramping,

due to cross-coupling of L1 to the bound-bound transition. Maintaining δpc = 0 would

therefore require ramping both the powers and detunings of L1 and L2 simultaneously.

In the future, using the same 1038 nm beam for both the tweezer and molecular trans-

fer may reduce off-resonant scattering of the transferred molecule, which is otherwise

long-lived. Due to the tight focusing of the tweezer, the product Ω1Ω2 can be more than
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200 times higher for the same beam power, thereby allowing ∆ to increase to reduce off-

resonant scattering, while maintaining the same ΩR.

Finally, the transfer from the weakly-bound state to the ro-vibrational (singlet) ground

state could then be achieved by performing STIRAP [48, 131, 132] with an excited state

from the mixed potentials B1Π and c3Σ.
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Appendix A

Apparatus Appendix

A.1 ABCD matrices

The unfortunately-named ABCD matrices, or ray transfer matrices, were originally formu-

lated to calculate propagation in ray optics. The incident ray, described by its transverse

offset r from the optic axis, and angle of propagation θ relative to the optic axis, is re-

lated to the outgoing ray (r′, θ′), by

r′
θ′

 =

A B

D C


r
θ

 (A.1.1)

Each lens, as well as propagation through free space, is described by its own ABCD
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matrix. For example, the ABCD matrix for a thin lens of focal length f is

Mlens(f) =

 1 0

−1/f 1

 (A.1.2)

and for propagation through free space over a distance z is

Mprop(z) =

1 z

0 1

 (A.1.3)

The effect of propagating a ray through several of these elements occurring in series

is described by matrix multiplying their individual ABCD matrices in order of reverse

appearance.

A.1.1 Shifting focus by 1 µm

We want to find the distance to move the second telescope lens that will shift the tweezer

by 1 µm along the optic axis.

Mtot = Mprop(z)Mlens(fobj)Mprop(f2 − d)Mlens(f2)Mprop(f1 + f2 + d)Mlens(f1)

If we assume the incident beam is collimated (consisting of rays with θ = 0 for all r),

then the focus of the system occurs at z = z0 which makes the A coefficient of Mtot zero.

Solving, we find the following relationship between a small displacement d of the second
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telescope lens and the focal shift d z0 − fobj

z0 − fobj ≈ −d

(
fobj
f2

)2

(A.1.4)

Therefore, we can shift the tweezer focus by ∓1 µm by shifting the second telescope

lens by d = ±2 mm.

A.1.2 Fixing tweezer astigmatism

Because we are trying to calculate the finite waist size of the tweezer, we cannot use ray

optics. Surprisingly, however, the ABCD recipe can also be adapted to the propagation

of Gaussian beams (which is dictated by diffraction, not ray optics) via the complex q-

parameter, defined by

1

q
= −i λ

πw2
+

1

R
(A.1.5)

where w is the beam waist and R is the radius of curvature. A Gaussian beam is de-

fined entirely by its q-parameter. Then, the outgoing Gaussian beam will have a complex

q′-parameter satisfying

q′ =
Aq +B

Cq +D
(A.1.6)

The radius of curvature R′ and waist w′ of the outgoing beam can then be obtained by
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separating real and imaginary parts of 1
q′ , respectively. As before, the ABCD coefficients

for the entire system is obtained by multiplying the constituent ABCD matrices together.

This time with the cylindrical lens a distance d from L1

Mtot = Mprop(z)Mlens(fobj)Mprop(f2)Mlens(f2)Mprop(f1+f2−dc)Mlens(fc)Mprop(dc)Mlens(f1)

We obtain the q′ parameter along the optic axis around z = fobj , and find z0 where the

waist is minimized. We plot this z0 as a function of dc (Figure 3.8C) as well as the waist

itself as a function of dc (Figure 3.8D).

A.2 Scalar Theory of Propagation of Electromagnetic

Fields

This discussion is based on Ref [135] and ignores the vectorial nature of light due to its

polarization [136].

Given a field U over some aperture Σ, we want to calculate the field at an “observation

point”, P0. According to the Huygens-Fresnel principle, each point P1 on Σ is a secondary

source of outgoing spherical waves exp(ik·r)
r . The field distribution at P0 is a superposi-

tion of all these spherical waves, weighted by the complex amplitude of the field U(P1)

from where they originate. Without loss of generality, in the following, we choose z to be

the optic axis.
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The distance r01 between a point P1 = {ξ, η, 0} and P0 = {x, y, z} is

r01 =
√
z2 + (x− ξ)2 + (y − η)2 (A.2.1)

In the Fresnel approximation, the propagation distance is much greater than the size of

the aperture Σ, that is z2 ≫ (x− ξ)2, (y − η)2. Then we can get rid of the square root

r01 ≈ z

(
1 +

(x− ξ)2 + (y − η)2

2z2

)
(A.2.2)

and express the field at the observation point as

U(x, y) =
eikz

iλz

∫ +∞

−∞

∫ +∞

−∞
U(ξ, η)ei

k
2z

[(x−ξ)2+(y−η)2]dξdη (A.2.3)

=
eikzei

k
2z

(x2+y2)

iλz

∫ +∞

−∞

∫ +∞

−∞

[
U(ξ, η)ei

k
2z

(ξ2+η2)

]
e−i k

z
(xξ+yη)dξdη (A.2.4)

Therefore, the field at the observation point is related to the 2D Fourier transform of

U(ξ, η)ei
k
2z

(ξ2+η2), where the quadratic phase exponential ei k
2z

(ξ2+η2) arises from propaga-

tion by a distance z.

We now consider the addition of a thin lens of focal length f and radius h placed at

the aperture Σ. If both the parabolic approximation (small NA; f ≫ h) and the thin

lens approximation (n − 1)

(
1
R1

+ 1
R2

)
= 1

f hold, then the effect of the lens is to apply

a quadratic phase shift e−i k
2f

(ξ2+η2) to U(ξ, η), similar to the quadratic phase exponen-
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tial arising from propagation. Thus, the lens can be seen as “bringing the far field to a

distance f”.

If we place a lens at Σ, then Equation A.2.4 becomes

U(x, y) =
eikzei

k
2z

(x2+y2)

iλz

∫ +∞

−∞

∫ +∞

−∞

[
U(ξ, η)e

i k
2
(ξ2+η2)( 1

z
− 1

f
)

]
e−i k

z
(xξ+yη)dξdη (A.2.5)

where

U(ξ, η) =
1

πw2
obj

e−(ξ2+η2)/w2
obj × aperture(ξ, η) (A.2.6)

wobj is the beam waist at the thin lens (simulating the objective), and aperture(ξ, η)

represents the hard aperture of a lens of radius h by setting U = 0 for all ξ2 + η2 > h2.

Equations A.2.5 and A.2.6 allow us to calculate the transverse field distribution U(x, y)

that results from a field distribution U(ξ, η) which is then apertured and focused by a

thin lens of focal length f , followed by propagation over a distance z. Aberrations can

also be accounted for using additional factors of eik∆W (ξ,η) where ∆W (ξ, η) are the Seidel

aberrations [90].

A.2.1 Estimating Optimal Input Beam Size

We want to find the waist wobj which maximizes the axial trap frequency for a given in-

put beam power, since it is the smallest trap frequency which will limit the speed of Ra-
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Figure A.1: (A) Calculated intensity distributions in the x-z plane for dif-
ferent wobj using scalar diffraction theory. The Airy pattern fringes appear as
wobj exceeds 9 mm and the input beam starts resembling a plane wave. (B) Calcu-
lated Maximum intensity vs. Gaussian beam waist at objective wobj, with
constant total beam power. The objective aperture is set to 9 mm. The initial
increase is due to tighter focusing as the input beam fills the objective NA. Around
wobj ≈ 9 mm, clipping of optical power leads to decrease in maximum intensity.
(C) Calculated radial and axial trap frequencies vs. wobj. The trap frequen-
cies are maximized at w ≈ 9 mm, but in the experiment we choose 7 mm to avoid
clipping too much optical power. (D) Calculated Ratio of radial to axial trap
frequencies vs. wobj. For almost all applications, it is desirable to minimize this
ratio without too much clipping, which again occurs around w = 7 mm.

man sideband cooling (Chapter 5). To that end, we numerically solve Equation A.2.5 for

λ = 1 µm, h = 9 mm, f = 18 mm, and z ranging from f − 20 µm to f + 20 µm in

steps of 400 nm. Note that this is just an approximation, since neither the scalar nor Fres-

nel approximations hold in the case of our tweezer (since the waist is on the order of the

wavelength and because of the large NA, respectively).

Cross-sections of the intensity distribution, |U(x, y = 0)|2 as a function of z are shown

in Figure A.1A for different wobj . We see that tighter waists are obtained for larger wobj ,
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and the onset of Airy fringes when wobj > 9 mm, the aperture radius.

Next, we find z = z0 where the intensity is maximized and the atom will be trapped for

each wobj . This is plotted in Figure A.1B. To extract radial and axial trap frequencies, we

fit line cuts of the intensity distribution |U(x, y)|2 taken near (x = 0, y = 0, z = z0) to a

parabola. The trap frequencies for radial and axial directions are shown in Figure A.1C.

Finally, we plot the ratio of radial to axial trap frequencies in Figure A.1D. We choose a

waist of 7 mm to compromise between clipping as little power as possible and maximizing

the trap frequencies.

Repeating this calculation for the 700 nm tweezer gives the same optimum waist size.

A.3 Fourier Optics and the Plane wave basis

In Section A.2, the fields were expressed in terms of spherical waves. An alternate way to

look at it is to use the plane wave basis, which is the subject of this Section. Doing so al-

lows us to naturally introduce the ideas of “spatial frequency” and “angular bandwidth”.

This discussion is based on Ref [135]. The foundation of Fourier optics is expressing

the spatial part ψ(x, y, z) of a generic monochromatic electromagnetic field ψ(x, y, z)e−iωt

in the basis of propagating plane waves eik·r. Without loss of generality, we choose the
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optic axis to be along ẑ

ψ(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ψ0(kx, ky)esi(kxx+ kyy)± iz

√
k2 − k2x − k2y dkxdky (A.3.1)

The ± sign refers to waves propagating in the forward (+z) or backward (-z) direction.

At z = 0 (object plane)

ψ(x, y, 0) =

∫ +∞

−∞

∫ +∞

−∞
Ψ0(kx, ky)ei(kxx+kyy)dkxdky (A.3.2)

This is just the 2D Fourier transform. Therefore, ψ(x, y, 0) can be regarded as the “spa-

tial content” of the transverse field at z = 0 and its 2D Fourier transform Ψ0(kx, ky) as

the “spatial frequency”, or “angular content”. The latter term comes from the fact that

high transverse k-vectors (kx, ky) correspond to plane waves with k oriented at large an-

gles relative to the optic axis ẑ (correspondingly, an objective with high NA is sometimes

referred to as having large “angular bandwidth”).
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Appendix B

Single Atom Loading Appendix

B.1 Model for photons scattered vs. detuning

. Consider an atom of mass m in a 1D harmonic trap of depth U0 ≈ 1 mK and temper-

ature T . Expose the atom to near-resonant light of wavelength λres so that it begins to

scatter photons at a rate Rscat given by[104]

Rscat =
1

2

s0γ

1 + s0 + (2δ/γ)2
, (B.1.1)

where γ is the natural width, δ is the detuning from resonance including light shifts,

and s0 = I/Isat is the saturation parameter. Let’s consider the effects of Doppler heat-

ing/cooling, recoil heating, and polarization gradient cooling.
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For s0 ≪ 1, the Doppler heating/cooling rate is given approximately by

Ėdopp = ⟨F⃗OM · v⃗⟩ = α⟨v2⟩ = αkBT/m, (B.1.2)

where F⃗OM = −αv⃗ is the optical molasses force, and

α =
8h̄k2δs0

γ(1 + s0 + (2δ/γ)2)2
(B.1.3)

where k = 2π/λres. We used the fact that ⟨v2⟩ = kBT/m in a 1D trap. The recoil heating

rate is given by

Ėrecoil = 4h̄ωrecoilRscat, (B.1.4)

where ωrecoil = h̄k2/2m.

To model polarization gradient cooling (PGC) [137], we use

ĖPGC ∝ T h̄k2
δγ

5γ2 + 4δ2
, (B.1.5)

with a scaling factor chosen to reproduce the observed equilibrium imaging temperature

of ≈ 40 µK < Tdopp for Cs. Including PGC is important not only to understand the sub-

Doppler temperature, but also the shape of the curve shown in Figure B.1.

The total heating/cooling rate of the atom Ėtot is obtained by summing these contri-

butions. We can perform a simple estimate of the total number of photons scattered with
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Figure B.1: Fit of measured photons vs. detuning curve to the model. We allow the
overall height, light shift, and scaling factor on the heating/cooling rate to vary in
the fit. The data is for a single Cs atom in a 970 nm tweezer trap that is 0.6 mK
deep, with initial temperature of 10 µK from polarization gradient cooling before
imaging, which was measured independently by release/recapture and Raman side-
band thermometry. The horizontal dashed line indicates the detection limit due to
background.

the following routine, starting with some initial temperature T0 and initial survival proba-

bility P0 = 1:

1. Increase the temperature to Ti+1 = Ti + dt× Ėtot/kB

2. Reduce the survival probability of the atom Pi to Pi+1 = Pi × (1 − e−U0/kBT ), the
fraction of the Boltzmann distribution that is higher than the trap depth

3. Repeat until P ≪ 1.

If we use dt = 1/Rscat, then the total number of photons is given approximately by∑
i Pi.

This approach is very simple and ignores many of the complexities of the system, but

captures the important features. In particular, this model reproduces the overall shape of

the photon vs. detuning data and helps build understanding of the loading and imaging
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mechanisms.
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Appendix C

Raman Sideband Cooling

Appendix

C.1 “Temperature” of a Single Atom

What do we mean by the “temperature” of a single atom? After all, a single atom in a

conservative potential has nothing to thermalize with. Nevertheless, the distribution of

energies for a single atom trapped in a tweezer over many realizations of laser cooling has

been found to be thermal [107]. Therefore, temperature here refers to the distribution of

atom energies over many realizations of the experiment.

It is important to establish this fact because single-atom thermometry based on in-

terpretation of Raman sideband spectra (Appendix C.7.1), release and recapture curves

(Appendix C.2), and adiabatic lowering [138] depend on the assumption that the distri-
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bution of atom energies is thermal. One important caveat is that pulsed RSC is at high

risk of creating non-thermal energy distributions due to the n-dependence of motional

sideband transition strengths (Section 5.5.2). However, we note Equation C.7.3 provides

a lower bound on P0
1, assuming we are not unlucky enough to have significant population

in a state which is dark to our Raman sideband thermometry pulse length. In general, as

discussed in Ref [92], one should do thermometry at different pulse lengths to ensure no

motional states go unnoticed, although we do not do that here (for example, the loss of

contrast in Figure 5.4 can be explained from the independently-measured 300 µs Raman

decoherence time alone without having to invoke “dark” motional states).

C.2 Release and Recapture

The release and recapture technique [107] is a convenient way to measure the tempera-

ture of an atom in a tweezer. The tweezer is abruptly switched off for a time tRR, then

abruptly switched back on. The atom recapture probability is recorded as a function

of tRR, yielding a release and recapture curve. The downside of this method is that the

atom is more likely to be lost along the radial direction due to the higher trap frequencies,

making it less sensitive to the energy in the atom’s axial degree of motion.

The release and recapture curve does not have an analytic expression. To extract a
1Given n̄ from Equation C.7.6 (which requires only the assumption that we are in the LDR,

and not necessarily that the distribution is thermal), the motional state distribution which gives
a lower bound on P0 is the one which has population either in n = 0 or n = 1 (if there is any
population in n=2 and higher, P0 must increase to preserve n̄).
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temperature, we use a Monte Carlo simulation to obtain the expected release and recap-

ture curves for different atom temperatures T . The actual measured curve is then fit us-

ing least-squares to the expected curves to obtain the best guess of T .

The algorithm is as follows. We treat each dimension as an independent quantum har-

monic oscillator with trap frequency ωi
trap. Trap frequencies are measured independently

from parametric heating (Subsection 3.5.1). The atom is assumed to be at a single tem-

perature T for all three axes of motion (although other distributions can be modeled). In

each direction:

1. Calculate n̄i using Equation C.7.1.

2. Sample a random ni from the probability distribution Pn(n̄i) (Equation C.7.2)

3. Randomly distribute the energy Ei = (ni +
1
2)h̄ω

i
trap between kinetic energy Ki =

Ei sin
2(θ) and potential energy Vi = Ei cos

2(θ) by uniformly sampling θ.

4. Obtain the initial position and velocity via xinit
i =

√
2Ei
m

sin(θ)

ωi
trap

and vinit
i =

√
2Ei
m cos(θ),

respectively.

5. Following “release”, the atom reaches a final position xfinal
i = xinit

i + vinit
i tRR

If the total final energy after turning on the trap U(rfinal) +
∑

i=x,y,zKi exceeds the

trap depth U0 (obtained by measuring the light-shifted D2 transition frequency), then

the atom is lost. Repeat for many ni and θ at each tRR to obtain a smooth release and

recapture curve.

Experimentally, it is important to check that the tweezer intensity during the release

and recapture cleanly shuts off to zero, and cleanly turns back on to the original value,

without any ringing.
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C.3 Simulating Effect of Phase Noise on Raman Tran-

sitions

The PLL board outputs a voltage error signal proportional to the phase noise on the

9.2 GHz beat note, VPLL = β∆ϕ. To measure β, we drive the fast port of one of the

lasers with a 5 MHz voltage sine wave. This imprints sidebands on the beatnote at ±5 MHz

with peak phase deviation ∆ϕpkpk given by [139]:

∆ϕpkpk =
√
4× Psb/Pc

Where Psb and Pc are the power in one of the sidebands and the carrier, respectively. β

is then given by the ratio ∆ϕpkpk/VPLL,pkpk = 900.4◦/V. From this, we can obtain a time

series of VPLL(ti) and scale it by β to obtain the time series of the phase noise ∆ϕ(ti).

In the following, we numerically incorporate this phase error into the time evolution of a

two-level atom with the coherent Raman drive ΩR.

C.3.1 Phase Error on the Bloch Sphere

On the Bloch sphere, in a frame rotating at 9.2 GHz (hyperfine splitting between |3,−3⟩

and |4,−4⟩), we can effect a rotation by an angle α about an arbitrary axis n̂ to the state
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|ψ⟩ = a|3,−3⟩+ b|4,−4⟩ by the following

|ψ′⟩ = Rn̂(α)|ψ⟩ (C.3.1)

where

Rn̂(α) = exp(−iα
2
n̂ · σ⃗) (C.3.2)

= cos(
α

2
)Î − i sin(α

2
)n̂ · σ⃗ (C.3.3)

σ⃗ = σxx̂+ σyŷ + σyŷ is the Pauli vector and σi are the Pauli matrices.

The effect of an instantaneous phase error ∆ϕ on the Raman beatnote is to rotate n̂ in

the x − y plane by an angle ∆ϕ. Therefore, without loss of generality, if we assume n̂ is

originally along x̂, then the instantaneous phase error ∆ϕ rotates it to

n̂→ cos(∆ϕ)x̂+ sin(∆ϕ)ŷ

giving

Rn̂(α) =

 cos(α/2) −ie−i∆ϕ sin(α/2)

−iei∆ϕ sin(α/2) cos(α/2)

 (C.3.4)

At each time step ti = ti−1 + ∆t, we apply the rotation Rn̂(α) from Equation C.3.4 to
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the state |ψ⟩, using α = ΩR∆t and ∆ϕ = ∆ϕ(ti).

The population of |3,−3⟩ as a function of time is plotted in Figure 5.3B for several

independently-measured time series ∆ϕ(ti) to visualize the Rabi flopping. The decoher-

ence time is related to the time over which the different Rabi flopping curves dephase,

here ∼ 100 µs.

C.4 Differential Light Shift Due to Blackman Pulse

Shaping

We can estimate this differential shift as follows.

The shift of |s⟩ = |4,−4⟩ is given by

Ω(s, e1)
2

∆
+

Ω(s, e2)
2

∆
(C.4.1)

where e1 = |4′,−4⟩, e2 = |5′,−4⟩, and ∆ = 2π × 44 GHz.

The shift of |f⟩ = |3,−3⟩ is given by

Ω(f, e3)
2

∆+∆Cs
HF

+
Ω(f, e4)

2

∆+∆Cs
HF

(C.4.2)

where e3 = |3′,−3⟩, e4 = |4′,−3⟩, and ∆Cs
HF = 2π × 9.2 GHz.

Assuming ΩF4 ≈ ΩF3, we have Ω(s, e1) = ΩF4 ≈
√
2∆ΩR, scale the rest of the Rabi fre-
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quencies according to the Clebsch Gordan coefficients for Cs [119]. The differential shift

of 0.5× ΩR(t) is obtained by taking the difference of Equation C.4.1 and Equation C.4.2.

C.5 1D Simulation of Axial RSC

We use a full master equation simulation to treat the pulsed axial RSC cooling process.

This allows us to track the time evolution of population in each motional state, and verify

that all motional states are efficiently addressed.

We treat the tweezer as a three-dimensional harmonic oscillator with a cigar-shape,

which decouples motion along the three principal axes. Only spontaneous emission, pri-

marily from optical pumping as described in Appendix C.5.1, can couple motion among

the different axes. We account for this by adding in a momentum kick from each emitted

optical pumping photon “by hand” (Appendix C.5.1).

C.5.1 Heating Due to Optical Pumping

Using a Monte Carlo simulation and the Cs D2 line branching ratios [119] we calculate

that it requires, on average, 1.26 σ− photons to optically pump the atom from |3,−3⟩ to

|4,−4⟩ using σ− polarized light.2. During this time, on average one π photon and 0.26 σ−

photons are emitted. It is these emission events which give rise to momentum kicks in all
2By contrast, optically pumping from |3, 0⟩ → |4, 0⟩ using π polarized light requires 18 pho-

tons, which is why we don’t use this transition for Raman cooling in spite of its magnetic field
insensitivity.
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three dimensions and lead to heating of the axial direction even while cooling the radial

motion. Based on the dipole emission pattern, we find that, on average, 0.6 photons are

emitted along the tweezer’s axial direction per optical pumping stage.

C.5.2 RSC Hamiltonian

Here we list the terms in the axial RSC Hamiltonian and the sign conventions used in the

numerical simulation. We define our spin states |3,−3⟩ ≡ |↓⟩ and |4,−4⟩ ≡ |↑⟩ such that

σz = |3,−3⟩⟨3,−3| − |4,−4⟩⟨4,−4|

The initial state is given by a thermal distribution in the axial direction

ρT =
∑
n

Pn(n̄)|n⟩⟨n|

where Pn(n̄) is given by Equation C.7.2, n̄ = 9.2, and we keep only n from 0 to 89

(P89(n̄) < 10−4).

The time evolution of a density matrix ρ is given by the von Neumann equation

ih̄ρ̇ = [H, ρ] + ih̄L (C.5.1)

where
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H =
1

2
h̄δσz +

∑
n

nh̄ωax
trap|n⟩⟨n|+HR

where ωax
trap is the axial trap frequency and δ is the two-photon Raman detuning, de-

fined so that δ = −ωax
trap corresponds to the ∆n = −1 sideband (opposite our exper-

imental data). Also, we have subtracted the harmonic oscillator ground state energy

h̄ωax
trap

2 |0⟩⟨0|.

The coherent Raman coupling is given by

HR =
h̄ΩR

2
(σ+ exp(iηR(a+ a†)) + h.c.) (C.5.2)

where exp(A) =
∑∞

k=0
1
k!X

k is the matrix exponential of A and we keep only the first 5

terms for the numerical simulation, and ΩR = ΩR(t) from Equation 5.4.1 with Ω0
R taken

from Table C.5.2 and tPulse taking on values in Figure C.1B.

The optical pumping is described by the Lindblad superoperator

L = ÔρÔ† − 1

2
Ô†Ôρ− 1

2
ρÔ†Ô

where the jump operator is given by

Ô = Γ
1/2
OPσ

+(exp(iηOP (a+ a†)))nOP
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Figure C.1: (A) Raman coupling as a function of time for a Black-
man pulse. Ω0

R is the peak carrier Rabi frequency. (B) tPulse sequence as
a function of the cycle number. During the RSC sequence, there are 100
cycles, with 2 axial cooling pulses per cycle (interspersed between alternate ra-
dial cooling pulses). Here, tPulse ∝ 50

21
π/Ωn+1,n

R (Ω0
R) with n sweeping through

{39→ 0; 29→ 0; 14→ 0; 9→ 0; 4→ 0}. t0Pulse is the actual ground state
axial sideband π-time for a Blackman pulse with peak Raman coupling Ω0

R in
the presence of fluctations (see text). In the absence of fluctuations, this is just
50
21
π/Ω1,0

R (Ω0
R). Ωn+1,n

R were calculated using Equation 5.2.3 with η = ηR (Ta-
ble C.5.2).

using the same definition of the matrix exponential as in Equation C.5.2.

To simulate the RSC dynamics, we begin with the thermal state ρT .

As in the experiment (Subsection 5.5.2), a single axial cooling pulse consists of a coher-

ent Raman π−pulse with Blackman temporal profile (Equation 5.4.1) for some duration

tPulse. This is effected by applying the coherent part of Equation C.5.1

ih̄ρ̇ = [H, ρ]

Then we apply optical pumping with a rate ΓOP for TOP (Table C.5.2). This is ef-
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Parameter name Value
ηOP kOPx0

ηR 0.174
x0

√
h̄/(2mωax

trap)
kOP 2π/(852 nm)
ΓOP 1/(12 µs)
Ω0

R π/(52 µs)
ωax
trap 2π × 20 kHz

δ −2π × 18 kHz
TOP 85 µs
nOP 3

Table C.1: Parameters for axial RSC master equation simulation. ηR is
measured from the ratio of axial carrier to axial first order ground state sideband
π-time. Obtaining this measurement required iterating between measuring the π-
time ratio and refining the simulation with the new ηR in order to measure the true
ground state sideband π-time. Ω0

R = π/tπPulse, where tπPulse is the measured carrier
π-time using a square pulse. The axial trap frequency in the experiment ωax

trap is
actually 2π×25 kHz, which would make the cooling better in real life. Also, the use
of nOP = 3 is conservative, since we estimate in Appendix C.5.1 that it should only
be 2 × 0.6 (the factor of 2 arises from 2 optical pumping pulses per axial cooling
pulse, as mentioned in the text).
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Figure C.2: Cooling trajectory from 1D master equation simulation of
axial RSC, including phase fluctuations. We simulate and plot the log popula-
tion in each motional state as a function of time (details in text).

fected by passing the density matrix from the previous step to the dissipative part of

Equation C.5.1

ih̄ρ̇ = ih̄L

This concludes a single axial cooling pulse.

There are two axial cooling pulses per cycle (interspersed between alternate radial cool-

ing pulses). Each pulse contains an optical pumping step, meaning there are two optical

pumping steps per axial cooling pulse. The total heating resulting from the two optical

pumping steps worth of photon recoils is 2 × 0.6 (Appendix C.5.1) and is encoded in nOP

(however, in the simulation we used nOP = 3 to be safe).
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The total RSC sequence consists of 100 cycles, with tPulse varying with each cycle as

depicted in Figure C.1B. The populations in each state as a function of time is plotted in

Figure C.2. We have also added a fluctuating phase to the Raman coherent drive term

ΩR → ΩRe
−∆iϕ, similar to the phase fluctuations measured in Figure 5.3B. As would be

done in the experiment, we simulate driving a Rabi flop on the heating sideband when

the atom is initially in its motional ground state to calibrate the actual ground state side-

band pulse π-time in the presence of fluctuations. We then used that time to scale the

entire pulse length sequence (Figure C.1B).

C.6 State Detection

In the experiment, we are usually interested in the atoms’ spin state (either |4,−4⟩ or

|3,−3⟩), but the only thing we can directly observe is the absence or presence of the sin-

gle atom. State detection is a way to map |4,−4⟩ and |3,−3⟩ population to the absence

and presence of an atom, respectively. In these cases, the atom “survival probability” fol-

lowing a measurement is a proxy for “|3,−3⟩ population”.

For Raman sideband thermometry (Section 5.5.3) of very cold atoms (n̄ << 1), it

will be necessary to distinguish a tiny but nonzero |3,−3⟩ population from background.

Therefore, a recurring theme in the ensuing discussion will be of reducing the “back-

ground survival”, and hence, variance in atom survival probability, which tend to mask

these tiny features.
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For most purposes, state detection only has to distinguish whether the atom is in the

F = 3 or F = 4 manifold. The scheme is as follows. After the sequence is over, the atom

is presumably in one of |3,−3⟩ or |4,−4⟩. We instantaneously lower the tweezer depth to

Ublast/kB = 80 µK and illuminate the atom for 20 µs with 600 µW σ−-polarized light

resonant with the |4,−4⟩ → |5′,−5⟩ cycling transition. The trap lowering is necessary to

make blast more efficient at removing atoms and yield low background survival.

The “blast” pulse will efficiently kick the Cs atom out the tweezer only if the Cs atom

was in |4,−4⟩ to begin with. Next, we image the atom to determine whether it is still

there or not. The survival probability following the state detection sequence therefore

tells us the fraction of atoms that were in |3,−3⟩ instead of |4,−4⟩.

A few important considerations for optimizing the blasting step:

1. Ublast was chosen to be the minimal trap depth that didn’t result in atom loss after
abrupt lowering.

2. Off-resonant spontaneous Raman scattering of tweezer photons (∼ 1 Hz at 1.2 mK
trap depth) can flip the state of the atom prior to blasting and limit the state de-
tection fidelity. Lowering the trap power reduces this scattering rate by a propor-
tional amount.

3. Lowering the trap abruptly also reduces the amount of time the atom spends in
a deep tweezer, and is enabled by the fact that at this point in the sequence, we
no longer have to worry about doing everything adiabatically since all the relevant
information about the atom is encoded in its hyperfine state.

4. The detuning of the blast pulse should be re-calibrated depending on Ublast due to
the trap-induced light shift (in fact, this is how we calibrate Ublast). This can be
done by optically pumping the atom into |4,−4⟩, followed by the standard state
detection sequence, but at different values of the blast detuning. The blast power
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should be reduced for better frequency resolution. You can sit at the blast detun-
ing which yields minimum atom survival probability. In our case it was detuned
+13 MHz from the |4,−4⟩ → |5′,−5⟩ transition frequency in free space.

C.6.1 Measuring OP and RP Scattering Rate

The scattering rate of the RP beam ΓRP should dominate over that of the OP beam ΓOP

to ensure a low background survival. In the experiment we typically aim for ΓRP /ΓOP ≥

10.

To estimate the OP beam scattering rate, we pump the atom to |4,−4⟩, rotate B⃗OP

by 45◦ in the x − z-plane so that the OP beam is no longer purely σ−-polarized, and ap-

ply OP light for a variable time. This yields an exponential decay “depumping” curve as

shown in Figure C.3A, with a rate constant ΓOP, 45◦ proportional to the OP beam power.

Throughout RSC, the atom should be in {|3,−3⟩, |4,−3⟩, |4,−4⟩} subspace, and there-

fore the only RP process that matters is from |3, 3⟩ into the F = 4 manifold. To measure

this repumping rate ΓRP , pump the atom to |4,−4⟩ using OP+RP, drive a Raman carrier

π-pulse to |3,−3⟩, and apply RP light for a variable amount of time. Similar to before,

this yields an exponential decay of F = 3 population, with a rate constant proportional to

the RP beam power.
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Figure C.3: Measurement of depumping ratio. (A) Misaligned scattering
rate. The B-field (black arrow) is tilted 45◦ relative to the OP beam direction
(blue arrow). The depumping timescale is 9.1(9) µs. (B) Aligned scattering
rate. The B-field is parallel to the OP beam direction. The depumping timescale is
14(2) ms. The ratio ΓOP, 45◦/ΓOP, 0◦ = 1555.

C.6.2 Optical Pumping Fidelity

The fidelity of OP can be characterized by how well we can prepare the atom in the |4,−4⟩

state. Any atoms which accidentally end up in the F = 3 manifold will contribute to the

background survival. High fidelity OP is contingent on the beam having pure σ− polariza-

tion, to which the |4,−4⟩ state is dark (assuming OP is sufficiently detuned from |5,−5⟩).

The ratio of desirable to undesirable scattering events is given by the OP polarization pu-

rity Iσ−
Iσ++Iπ

(where Ip is the intensity of the p-polarization component) and quantifies the

steady state |4,−4⟩ population during OP [102]. The inverse of this ratio therefore places

an upper bound on the contribution to background survival due to imperfect OP.

The OP and RP beams are co-propagating on the apparatus side. Their polarization is

set with a polarizer (Foctek a-BBO Glan-Taylor polarizer with 5 × 10−6 extinction ratio)

followed by a quarter-wave plate. We therefore have three degrees of freedom with which
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to optimize the OP polarization purity: the B-field angle in the x−y and x−z planes and

the QWP angle.

To characterize the σ− polarization purity of the OP beam, we rely on the fact that

non-σ− components will pump the Cs atom into the F = 3 manifold. The measurement

is as follows. We pump the atom into |4,−4⟩, and then, without changing B⃗OP , apply OP

only (with no RP) for a variable amount of time (Figure C.3B). This “aligned” depump-

ing rate ΓOP, 0◦ is to be compared to the misaligned depumping rate ΓOP, 45◦ obtained in

Figure C.3A.

Due to polarization dependence of the scattering rate, there is no one-to-one relation-

ship between the depumping ratio and polarization purity (multiple different combina-

tions of π- and σ+-polarization can give the same depumping rate). Nevertheless, the

depumping ratio does give a lower bound on the OP polarization purity [102], i.e.

Iσ−

Iσ+ + Iπ
≥

ΓOP, 45◦

ΓOP, 0◦
(C.6.1)

In the experiment, we achieved a depumping ratio of ΓOP, 45◦/ΓOP, 0◦ = 1555 in a

1.2 mK deep trap, meaning we suppress the OP contribution to background survival to

less than one part in 1555.
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C.7 Useful Harmonic Oscillator Relations

Here is a useful cheat sheet of formulas for for single atoms in a harmonic oscillator.

Consider a 1D harmonic oscillator with frequency ωtrap, mass m, and average motional

quantum number n̄ =
∑

n nPn, where Pn is the probability of occupying state n.

The energy of an atom occupying the motional state n is

En = (n+
1

2
)h̄ωtrap

Separability means the total energy of a 3D harmonic oscillator is just the sum of the

energies in all three dimensions.

Moments of harmonic oscillator wavefunctions

⟨(∆x)2⟩ = h̄

2mωtrap
(2n+ 1)

⟨(∆p)2⟩ = h̄mωtrap
2

(2n+ 1)

In terms of the temperature T , we have

n̄ = 1/(eh̄ωtrap/(kBT ) − 1) (C.7.1)
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Assuming a thermal distribution, i.e., Pn+1/Pn = e−h̄ωtrap/(kBT ), the probability to

occupy the motional state n given n̄ is

Pn(n̄) = n̄n/(1 + n̄)n+1 (C.7.2)

Therefore, the ground state population is given by

P0 =
1

1 + n̄
(C.7.3)

≈ 1− n̄ (C.7.4)

The second line holds in the limit of n̄≪ 1.

C.7.1 Raman Sideband Thermometry Relations

Below are some useful formulas for Raman sideband thermometry. To obtain n̄ from side-

band asymmetry I−1

I+1
where I−1 is the height of the ∆n = −1 sideband, etc. In the LDR

(such that Raman sideband transition strengths µn+1,n ∝
√
n+ 1) or assuming a thermal

distribution (either assumption suffices), we have

rSA ≡
I−1

I+1
=

n̄

n̄+ 1
(C.7.5)
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n̄ =
I−1

I+1 − I−1
(C.7.6)

P0 =
I+1 − I−1

I+1
= 1− rSA (C.7.7)
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Appendix D

Adiabatic Merging Appendix

D.1 Fourier Grid Method

The Fourier Grid method [140, 141] is a way to numerically calculate the eigenfunctions

and energy eigenvalues of a 1D potential V (x), which is defined at discrete points xj =

xmin + ∆x(j − 1) with spacing ∆x = xmax−xmin
N−1 . For example, we use this to calculate

the radial or axial wavefunctions of a single Na or Cs atom while merging the tweezers

(Section 6.6), and the binding energies and vibrational wavefunctions for a given PEC to

obtain FCFs (Section 8.3).

Our basis consists of sinc functions

ϕj(x) =
1√
∆x

sinc[π(x− xj)/∆x] (D.1.1)

which satisfy ⟨ϕi|x̂|ϕj⟩ = xiδij . The eigenfunctions Ψk(x) can be represented in this
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basis by

Ψ̄k(x) =

N∑
j=1

Cjkϕj(x) (D.1.2)

where Cjk/
√
∆x = Ψk(xj). This representation is enabled by the Whittaker-Kotel’nikov-

Shannon sampling theorem, which states that a continuous, band-limited function Ψk(x)

can be perfectly reproduced by interpolating between the finite set of values Ψk(xj) on

an equally spaced grid, provided the grid spacing ∆x < π/kmax, where kmax is the

highest spatial frequency. The discretization of phase space allows us to solve the time-

independent Schrodinger equation using matrix methods. The Hamiltonian matrix is then

given by Hij = Tij + Vij , where

Tij = −
h̄2

2m

⟨
ϕi

∣∣∣∣∣ d2dx2
∣∣∣∣∣ϕj
⟩

=
h̄2(−1)i−j

2m∆x2


2

(i−j)2
i ̸= j

π2

3 i = j

(D.1.3)

and

Vij = V (xi)δij

Diagonalizing Hij gives the energy eigenvalues and a matrix of eigenvectors Cij .
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Figure D.1: Simulated 2D tweezer power scan. Numerical simulation of the
axial ground state population for Na and Cs following the merge sequence with
hybrid trajectory described in Sec. 6.4. All the fundamental heating mechanisms
(delineated by purple lines) are qualitatively reproduced.

D.2 Simulated Tweezer Power 2D Scan

As in Section 6.6, we use the split-operator method to simulate the dynamics of merging

atoms into one tweezer with different 700 nm and 976 nm tweezer powers. This yields the

plots in Fig D.1A and B for Na and Cs, respectively. We find that heating regions aris-

ing from double-well for Na and anti-trapping of Cs seen in Figure 6.5A are qualitatively

reproduced (discrepancy in the exact size of the heating regions are attributed to aberra-

tions of the tweezers which cause the actual trap depth to be different than expected).

We observe more overall heating in the experimental data compared to simulation,

even in the regions that have no specific heating mechanism. This is likely caused by ax-
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ial misalignment, which we estimate to be about 1.5 µm in this experiment.

D.3 Effect of Tweezer Tilt

We can quickly estimate the effect of tilt, which would arise mainly from the tweezer

beam entering the objective off-center. The upper bound on this alignment offset is 1 mm.

The working distance of the objective is 16 mm, so the resulting tilt of the trap would

be 0.062 rad. The ratio of radial to axial trap frequencies is approximately 6. We scale

the time axis on Figure 6.6 by 6 × sin(0.062). The blue curve will then give the onset of

Cs axial heating in the presence of 0.062 rad tilt of the trap, due to motion in the radial

direction.

After performing this scaling, the onset actually decreases from 0.8 ms to 0.3 ms, so we

expect tweezer tilt not to contribute to axial heating.
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